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Preface

The Italian Conference on Theoretical Computer Science (ICTCS) is the
annual conference organized by the Italian Chapter of the European As-
sociation for Theoretical Computer Science (EATCS). The scope of the
meeting is fostering the cross-fertilization of ideas stemming from different
areas of Theoretical Computer Science. Hence, it represents an occasion
for meeting and exchanging ideas and for sharing experiences between
researchers; it also provides an ideal environment where junior researchers
and PhD students can meet senior researchers.

Topics of interest for ICTCS are: agents, algorithms, argumentation,
automata theory, automated theorem proving, complexity theory, com-
putational logic, computational social choice, concurrency, cryptography,
discrete mathematics, distributed computing, dynamical systems, formal
methods, game theory, graph theory, knowledge representation languages,
model checking, process algebras, quantum computing, rewriting systems,
security and trust, semantics, specification and verification, systems biol-
ogy, types.

This volume contains papers presented at the 17th Italian Confer-
ence on Theoretical Computer Science (ICTCS’16), held in Lecce during
September 7-9, 2016, together with abstracts of invited lectures by Gi-
ampaolo Bella (Università di Catania) and Gianluigi Greco (Università
della Calabria). Two types of contributions were solicited: regular papers
and short communications. The former consisted in full original papers,
presenting novel results, not appeared or submitted elsewhere, while the
latter encompassed extended abstracts of papers already appeared, or
submitted, or to be submitted elsewhere; papers reporting on ongoing
researches on which the authors wished to get feedback and possibly in-
tended to be included in future publications; overviews of PhD-theses,
research projects, and so on. We received a total of 35 submissions. Regu-
lar papers and short communications were reviewed by, respectively, three
and two referees who judged them for originality, quality, correctness and
consistency with the topics of the conference. Based on the referees’ re-
ports, the Program Committee decided to accept a total of 29 submissions:
15 regular papers and 14 short communications.

We would like to thank all the authors who responded to the call for
papers and our invited speakers Giampaolo Bella and Gianluigi Greco.



Furthermore, we thank the members of the Program Committee and the
subreferees for their excellent and qualified work.

We gratefully acknowledge sponsorship from the Univerità del Salento
and its Department of Mathematics and Physics “Ennio De Giorgi”, the
Fondazione Puglia, and the Italian Chapter of the European Association
of Theoretical Computer Science.

Lecce
September 20, 2016

Vittorio Bilò
Antonio Caruso
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Cybersecurity’s Way Forward:
to get Beautiful or Invisible

Giampaolo Bella

Dipartimento di Matematica e Informatica, Università di Catania, Italy
giamp@dmi.unict.it

Abstract. People do not generally like Cybersecurity. Although they do
believe it is somewhat good to have, they often cannot be bothered to go
through security defences such as registrations, strong passwords’ choices,
PINs’ long waits through the post and all the like. I do believe they are
essentially right, especially if modern services are to be enjoyed on the
move, while the user is hopping on the tube, or pervasively, while the user
is also watching television. Sometimes users have to be bothered to go
through such defences otherwise they will not get the service they wanted.
They may then be nastily rewarded with senses of disappointment and
frustration both if they opted to go on and if their pride or boredom
prevented them to.
A layman at a cafe was arguing that he found Cybersecurity especially
hideous when he was in a rush to get some service. Almost every researcher
who looks at Cybersecurity from the socio-technical angle will agree with
that layman as much as I do. This position paper outlines my view of
the sole way forward for Cybersecurity: a fork in the road that takes
either to Beautiful City or to Invisible City. One may of course refuse
the fork and go back on the same road to Old City, where Cybersecurity
often failed for a variety of reasons, including purely technical bugs and
human-centred mistakes. I will postulate how I envisage Beautiful City
and Invisible City to be. And do not worry you formal methodists: your
help will be most appreciated also in the new cities.

1 Rationale

A modern understanding of Cybersecurity situates it in a real use scenario that
sees human users approach a technology that is meant to be secure, and ex-
perience it or, more simply, just use it. This is certainly a fuller and yet more
insightful understanding than the traditional one, at least because it is clear that
no technology will be secure if its users keep the login passwords on sticky notes.

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
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2 Giampaolo Bella

Here comes a new breed of views of Cybersecurity that are pivoted on the
users, featuring the social, economic and legal views. These bear a huge potential
to unveil niceties that could not be spot before, such as how easy it is for the
layman to learn and comply with Cybersecurity, the coexistence with a deployed-
though-flawed system version, and the assistance of the law to users who are
victims of real-world breaches.

These new views entail what the Technocrats may perceive as a revolution:
it will not suffice to look at the technical system in all sorts of ways to make
it secure as they were used to do; by contrast, Scientists will have to look at
the technical system holistically with its human users, and make that larger
“system” secure. Arguably, Scientists will have to collaborate with colleagues
from the Humanities to account for the human element. They will still only pass
a technical system on to Engineers to build, but the resulting technology will be
secure and privacy-preserving when practically used.

The new views of Cybersecurity in fact attract a worldwide, interdisciplinary
task force of researchers at present. These are not just Computer Scientists but
also Sociologists, Psychologists, Economists and Lawyers, confirming once and
for all to everyone that the topic is not a purely technical one, as someone might
have believed. A number of research events have appeared to publish the new
research output, notably the Workshop on Socio-Technical Aspects in Security
and Trust (STAST) [1], the Workshop on the Economics of Information Security
(WEIS) [2], and the Workshop on TEchnical and LEgal aspects of data pRIvacy
and SEcurity (TELERISE) [3] to just mention one per view.

2 Technology Users

Humans are difficult to fully account for, let alone formalise in the way dear to
Formal Methodists. In particular, the human users of a technology are far from
being automata executing the perfect program that the Technocrats behind that
technology had in mind:

Users may be deceived It is consolidated at least since Mitnick published
his famous book on deception that humans are rather easy to be duped
into making insecure actions, such as choosing poor passwords or annotating
secrets in insecure places [4]. It turns out that humans may effectively be
tricked into facilitating the attacker’s aims.

Users may make errors There exists vast work from the Humanities studying
how and why humans make errors. Norman catalogued errors either as a
failure to do what the user intends (mistakes) or a momentary lapse when
the user takes an unintended action (slips) [5]. For example, both types of
errors might be due to the often innate quest to operate in a best-effort way.

Users may choose to counter Cybersecurity When humans feel Cyberse-
curity as a burden more than as a benefit, they may deliberately ignore or
oppose it. For example, some companies require card-and-PIN authentication
to enter their premises or record work times, but Amazon suggests that cards
can be left in a public card rack near the PIN pad [6].
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3 The Cybersecurity Planet

I have done some research on the social view of Cybersecurity (not yet on the
others), and this position paper gives me the opportunity to summarise and
review some of my findings. At the moment, I see Cybersecurity as a planet with
just three cities: Old City, Beautiful City and Invisible City. There exists a road
that departs from Old, then forks and takes either to Beautiful or to Invisible.
I am afraid that I have not explored anything else of that planet yet. It would
seem that we researchers have been given the power to put the human users of
the technology that we want to be secure in any of the three cities. I speculate
that we used to choose Old but we had better take the users to either Beautiful
or Invisible if we really care that technology to be secure.

3.1 Old City

This is the oldest city on the Cybersecurity planet, hence technology users have
lived it for a long time. Here, Cybersecurity can be particularly hard to un-
derstand, interpret and use, and it can be realised empirically that it is often
vulnerable. Vulnerabilities exist despite the Technocrats’ best efforts at prevent-
ing them, hence all sorts of security incidents have happened over time.

Vulnerabilities are not only purely technical as with the SSL Heartbleed and
Shellshock bugs. IBM reported that “over 95 percent of all incidents investigated
recognize ‘human error’ as a contributing factor” in the 2014 Cyber Security
Intelligence report [7], a trend that has not substantially changed ever since. One
example dating back to a couple of years ago is how a user could deliberately
share a file she stored on Dropbox or on Box with other users and inadvertently
disclose it to unwanted parties[8]. Even the established policy of asking users
to change their passwords from time to time may falter. It was recently found
out that humans often resort to simple, algorithmic changes of the previous
password to build the new one, hence attackers will just have to fine-tune their
brute-forcing techniques [9]. Cybersecurity often intertwines with people’s safety.
Last year’s Chatham House Report shouts out loud to the world that “Some
nuclear facilities do not change the default passwords on their equipment” [10].

3.2 Beautiful City

In this city, Cybersecurity is beautiful [11], and I contributed some definition
on what that means. Cybersecurity is beautiful if it satisfies a triple of abstract
requirements: to be a primary system feature, not to be disjoint from the system
functions to be secured, and to be ambassador of a positive user experience. I
am going to expand them below.

The first one is not innovative by itself as it appeals to the security-by-
design principle that the system should be designed with security in mind since
the beginning; this normally enhances the ease of use and at the same time
the effectiveness of the security defences. For example, security experts should
contribute to the design of at least security-sensitive services since the inception.
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The second requirement insists on what even security-by-design fails to pre-
scribe clearly, that the secure access to a service be exclusive, namely the only
possible one. For example, let us think of a web site secured via HTTPS yet
allowing access also via HTTP for whatever legacy or performance reason. Also,
when a user connects to a remote host via SSH for the first time, the user will
have to accept the host’s public key on trust rather than on a viable certification
system.

The third requirement is perhaps the most abstract one. I would like Cyber-
security to be nice, desirable, rewarding and, generally speaking, a somewhat
positive thing to have. One way to meet this requirement could be to aim at a
Cybersecurity perceived as an engaging and fun game. An episode of the Peppa
Pig cartoon portrays a group of kids wanting to be part of a “secret club” as soon
as they come to know of its existence [12]. Can we manage to upturn people’s
currently negative perception of Cybersecurity to match the cartoon’s?

The gist of the beautiful security principle is that all three requirements
be met at the same time. It would seem that the use of the web interface of
WhatsApp conforms to this principle. The web client prompts the server, who
then issues a passcode for the former, stores it and sends it back; the web client
displays it as a QR code, which the phone client (the app) scans and sends to the
server along with the chat log stored on the phone. Only if the received version
matches the stored version, will the server output the chat log to the web client.

Notably, it all takes place over HTTPS except for the step whereby the
passcode reaches the phone, which involves a human pointing the phone to the
computer screen to scan the QR code. This is a crucial design choice: the passcode
is 128 characters long, hence it would have been super tedious for the user to
have to read it from the computer screen and tap it in the phone. Here, QR-code
scanning conjugates usability, simplicity, security and also some beauty. I gather
from random discussions that QR-code scanning normally thrills people.

3.3 Invisible City

In Invisible City, Cybersecurity is not perceived by the technology users although
it is still there. The idea is that if we cannot conjugate users and security by
means of beauty, then the only option left seems to make security invisible, that is
to literally make it invisible to the users’ perceptions. I provided various examples
on how this could be achieved in practice by integrating the security defences
with system functions or with other defences that the users would accept as
routine [13].

My favourite example is the Iphone 5S’s integration of the screen activation
button with the fingerprint sensor. This idea stemmed from the observation that
people were used to a stand-by display being off to preserve battery, hence to
the need of pressing some button to activate it when needed. This integration
combined a routine action with an important security defence, user authentication
to the phone, which otherwise required a separate ceremony to insert a PIN or
password.
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I argue that another security ceremony that could live well in this city would
be a modification of the ceremony whereby passengers currently board flights
(at the gates of Old City airport). Each passenger gives the gate attendant three
pieces of information: the passenger’s face, his ID and his boarding pass. The
attendant matches face to ID, checks the ID validity, matches the ID to the
boarding pass, scans the pass in the airport system and checks that the outcome
confirms the identity that is allowed on the flight currently boarding. Only if all
checks succeed will the passenger be allowed to go through, otherwise he will
be stopped for further scrutiny. These are a number of checks for the attendant
to carry out on each passenger in a long queue, hence not surprisingly some
passengers complained to have reached the wrong destination [14].

With airport security being so sensitive at present, this scenario could be easily
turned into various types of threats if the passenger attempted it deliberately
and without reporting it. Therefore, I suggest to completely dispose with the
boarding pass. This would leave only the initial authentication checks and the
final authorisation one performed on the ID, which should be an electronic one,
rather than on the pass. The match between the details of the ID with those
of the boarding pass would be eliminated, reducing the risk of mismatching an
authenticated identity to an identity that is authorised to board the flight.

4 Formal methods

I am a formal methodist down to the bone, so it is no surprise if I believe that
formal methods can help a great lot to assess Cybersecurity from the socio-
technical angle, hence to build both Beautiful City and Invisible City. I have
published a few contributions to this debate [15,16]. In particular, I used the
Cognitive Walkthrough usability inspection method to analyse Amazon’s sub-
ceremonies for price-quotation, shopping and purchase of the time, observing a
few weaknesses. A notable one was that a user could choose a weak login password
without getting any warning, and his credit card details would be recorded and
protected merely by that weak password. Although these ceremonies have changed
repeatedly over time, one of the conclusions of the analysis was:

“Amazon should clarify that the password that a user chooses during
Registration has an impact on the confidentiality of their credit card
details during network traversal at time of Purchase. Hence, Amazon
should encourage each user to choose a strong password.” [17].

The value of this recommendation does not expire; it could be generalised to
every service recording users’ sensitive information.

5 Conclusions

This position paper demonstrates my view of Cybersecurity as a socio-technical
problem, namely one that pertains to both the technology and to how users
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receive and avail themselves of it. Cybersecurity is a planet featuring Old City,
one in which vulnerabilities and their exploitations are also due to an insufficient
account on how humans use technology. I envisaged a road departing from Old
City taking to either Beautiful City or to Invisible City, where I argued that
Cybersecurity is more mindful of the human element. I also described some recent
example uses of formal methods to help consolidate and expand the two new
cities. Those are the places where I conclude that we researchers in Cybersecurity
had better “move” the technology users from Old City.
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Mechanisms with Verification and Fair
Allocation Problems

Gianluca Greco

University of Calabria

Abstract. Whenever the outcome of some social choice process depends
on the information collected from a number of self-interested agents,
strategic issues come into play and mechanism design techniques have to
be used in order to motivate all agents to truthfully report the relevant
information they own as their private knowledge. The talk illustrates
some general background on these techniques and specific methods that
can be applied when some kind of verification on the declarations of the
agents is possible. In particular, attention is focused on analysing a class
of mechanisms that naturally arise in the context of allocation problems,
by proposing to interpret them in terms of well-known solution concepts
for coalitional games. Complexity issues arising in this setting are also
discussed, and structural requirements are investigated which can be used
to identify islands of tractability.
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Non-Atomic One-Round Walks
in Polynomial Congestion Games

Cosimo Vinci
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Abstract. In this paper we study the approximation ratio of the solu-
tions achieved after an ε-approximate one-round walk in non-atomic con-
gestion games. Prior to this work, the solution concept of one-round walks
had been studied for atomic congestion games with linear latency func-
tions only [Christodoulou et al. 2006, Bilò et al. 2011]. We focus on polyno-
mial latency functions, and, by exploiting the primal-dual technique [Bilò
2012], we prove that the approximation ratio is exactly ((1+ ε)(p+1))p+1

for every polynomial of degree p. Then, we show that, by resorting to
static (resp. dynamic) resource taxation, the approximation ratio can be
lowered to (1 + ε)p+1(p+ 1)p (resp. (1 + ε)p+1(p+ 1)!).

Keywords: computational social choice, algorithmic game theory, con-
gestion games

1 Introduction

Since the end of the Twentieth Century, the computer science community has
been interested in the study of complex systems populated by (numerous) selfish
agents interacting with each other, and in how their selfish behavior impacts on
the social welfare [24]. As examples, one may think to web users greedily sharing
limited resources, or to drivers who want to move as fast as possible from a
location to another along a street network.

These systems are often modeled by congestion games [25]. In these games,
there is a set of non-cooperative selfish players sharing a set of resources and
each resource incurs a certain latency to the players using it. Each player has an
available set of strategies, where each strategy is a non-empty subset of resources,
and aims at choosing a strategy minimizing her cost which is defined as the sum
of the latencies experienced on all the selected resources. A congestion game is
called atomic when the set of players is finite, and it is called non-atomic when
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the set of players is infinite and the contribution of each player to the social
welfare is infinitesimally small.

In congestion games, selfish behavior always leads to stable outcomes, called
Pure Nash Equilibrium [23], in which each player cannot improve her utility by
unilaterally deviating from her strategy. In general, Pure Nash Equilibria do not
yield an optimal social welfare, hence, to measure the quality of these outcomes,
two metrics have been successfully proposed: the price of anarchy [21] and the
price of stability [2]. They are defined as the highest and the lowest ratio between
the social welfare at any Nash equilibrium and the social optimum, respectively.

Besides Pure Nash Equilibria, in the setting of atomic congestion games,
the notion of one-round walks starting from the empty state has been widely
investigated due to its simplicity and effectiveness. This concept assumes that,
starting from the situation in which no strategy has been specified yet, the players
are processed sequentially and, at each iteration, the selected player irrevocably
chooses her strategy so as to minimize her cost based on the choices of the
previous ones. The approximation ratio of one-round walks starting from the
empty state, an analogous of the price of anarchy instantiated to one-round walks,
measures the quality of the outcomes produced at the end of this process [22,14].

Our Contribution. In this work, we translate the solution concept of one-round
walks from atomic congestion games to non-atomic ones. We define the solution
concept of ε-approximate non-atomic one-round walk starting from the empty
state, in which there is a continuous flow of selfish players (instead of a discrete
number of players) greedily selecting their strategies with the aim of approxi-
mately (up to a factor of 1 + ε) minimizing their costs, given the choices of their
predecessors. The ε-approximation ratio of a non-atomic one-round walk starting
from the empty state is the highest ratio of the the social value achieved by the
final outcome of an ε-approximate non-atomic one-round walk and the optimal
social value. In particular, we study this metric for non-atomic congestion games
with polynomial latencies, by proving a tight bound of ((1 + ε)(p+ 1))p+1, where
p is the the degree of the polynomial functions. Given that the (exact and ap-
proximate) price of anarchy for these games has been proven to be equal to
Θ
(
max

{
p/ log(p), (1 + ε)p+1}), our result shows that outcomes generated after

one-round walks are tremendously worse (even asymptotically) than Pure Nash
Equilibria in terms of social welfare.

For such a reason, we also focus on (resource) taxation [4]: an approach that
has been intensively studied in the literature in order to improve the quality
of the outcomes resulting from selfish behavior in congestion games. We prove
that, by resorting to static taxation (taxes are constant with respect to resource
congestion), the ε-approximation ratio drops to (1 + ε)p+1(p + 1)p, thus hav-
ing a good asymptotic reduction with respect to the case without taxes. By
resorting to dynamic taxation (in which taxes can vary as a function of re-
source congestion), we lower the ε-approximation ratio to (1 + ε)p+1(p + 1)! ∈
Θ
(
(1 + ε)p+1(p+ 1)p+3/2e−p

)
, thus having a further improvement.
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Related Work. The inefficiency of equilibria for polynomial congestion games has
been largely studied for both atomic and non-atomic congestion games. Relatively
to the non-atomic setting, Roughgarden [27] proves that the price of anarchy
for congestion games with polynomial latency functions of degree p is [1− p(p+
1)−(p+1)/p]−1 and characterizes the price of anarchy for other latency functions.

Christodoulou et al. [12] and Awerbuch et al. [3] prove that the price of
anarchy for linear atomic congestion games is 5/2 for unweighted games and
2.168 for weighted games. Aland. et al [1] generalize the previous results to
polynomial congestion games, and provide tight bounds asymptotically equal to
Θ(p/ log(p))p+1 on the price of anarchy for both unweighted and weighted atomic
congestion games with polynomial latency functions of degree p. Christodoulou
et al. [13] provide bounds on the approximate price of anarchy and stability for
both non-atomic and atomic polynomial congestion games, which are tight for
the former.

Among the mechanisms used to improve the quality of outcomes in congestion
games, the use of taxation has been extensively studied for several decades. The
marginal cost taxation [4] has been proven to enforce an optimal solution in
non-atomic congestion games with very general latency functions. In subsequent
works, the existence and the computation of efficient taxes in many variants of
non-atomic congestion games has been intensively studied [15,16,19,29].

Caragiannis et al. [11] study the efficiency of taxation for linear atomic conges-
tion games, and, among the obtained results, they prove that the price of anarchy
drops from to 2.168 to at least 2 for weighted congestion games. Bilò and Vinci
[8] extend the previous result to polynomial congestion games, and prove that,
by resorting to taxation, the ε-approximate price of anarchy of unweighted and
weighted atomic congestion games with polynomial latency functions drops to
Tp+1(1 + ε), where Tp+1 is the (p+ 1)-th Touchard polynomial.

Other mechanisms used to reduce the price of anarchy in congestion games
are Stackelberg Strategies [26,29,20,7,17], in which the strategies of a fraction of
players can be controlled with the aim of reducing the price of anarchy.

Mirrokni and Vetta [22] initiate the study of the social welfare achieved after
multiple rounds of best-responses in a Nash-dynamics for a particular class of
games, and they also consider the case of a one round of best responses. Christo-
doulou et al. [14] study for the first time the quality of outcomes obtained after
a one round of best responses in linear atomic congestion games. They prove
that, if players start from an empty state, the approximation ratio is at most
2+
√

5 for unweighted games and 4+2
√

3 for weighted games. For the unweighted
setting, Bilò et al. [6] prove that the previous upper bound is tight, improving
a lower bound of 4 obtained for load balancing games by Caragiannis et al. [10].
They also consider as a social function the maximum utility among all players,
and provide asymptotically matching bounds for the approximation ratio of one-
round walks starting from the empty state and from an arbitrary state. Bilò
[5] studies the approximation ratio for atomic congestion games with quadratic
and cubic latency functions. The quality achieved by multiple rounds of best
responses in linear congestion games has been studied in [14,18]. Bilò and Vinci
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[8] improve via taxation the performances of ε-approximated one-round walks
starting from the empty state in unweighted and weighted polynomial atomic
congestion games.

2 Preliminaries

For any integer n, set [n] := {1, 2, . . . , n} and [n]0 := [n] ∪ {0}.

Non-Atomic Congestion Games. A non-atomic congestion game is a tuple CG =
(N, E, (`e)e∈E , (ri)i∈N, (Σi)i∈N), where N is a totally ordered set of n ≥ 2 types of
players, E is a set of resources, `e : R≥0 → R≥0 is the latency function of resource
e ∈ E, and, given i ∈ N, ri ∈ R≥0 is the amount of players of type i and Σi =
{Si,1, . . . , Si,mi

} ⊆ 2E is the set of strategies of a player of type i, that is, each
player of type i has mi ≥ 1 possible choices. A congestion game has polynomial
latencies of degree p ∈ N when, for each e ∈ E, `e(x) :=

∑
d∈[p]0

αe,dx
d, with

αe,d ≥ 0 for each d ∈ [p]0; when p = 1, we speak of affine latencies.
A strategy profile is an n-tuple ∆ = (∆1, . . . ,∆n), where ∆i : Σi → R≥0 is a

function denoting, for each strategy Si ∈ Σi, the amount ∆i(Si) of players of type
i selecting strategy Si, so that

∑
S∈Σi

∆i(S) = ri. For a strategy profile ∆, the
congestion of resource e ∈ E in ∆, denoted as ke(∆) :=

∑
i∈N,S∈Σi:e∈S ∆i(S), is

the total amount of players using resource e in ∆. The cost of a player selecting
a strategy Si ∈ Σi is defined as cSi

(∆) =
∑
e∈Si

`e(ke(∆)) and each player aims
at minimizing it.

Non-Atomic One-Round Walks. For any type i ∈ N of players, we extend the
set Σi of strategies with the empty strategy ∅i, so as to include also the cases in
which some players have not chosen their strategies yet; in particular, we denote
with ∅ the empty state, that is, the strategy profile in which none of the players
has chosen a strategy.

For any ε ≥ 0, a strategy S∗i ∈ Σi \ {∅i} is an ε-approximate best-response
(ε-best-response, for brevity) for players of type i in ∆ if, for each S′i ∈ Σi \ {∅i},
cS∗

i
(∆) ≤ (1 + ε)cS′

i
(∆). Let M :=

∑
i∈N ri and let f : [0,M ] → N be a right-

continuous function such that
∫
f−1[{i}] dx = ri for each i ∈ N. We call f an

ordering function. Let (∆f,t)t∈[0,M ] be a family of strategy profiles such that:
(1)

∑
S∈Σi\{∅i}∆

f,t
i (S) =

∫
[0,t]∩f−1[{i}] dx for each i ∈ N and t ∈ [0,M ] (then,

∆f,t
i (∅i) = ri−

∫
[0,t]∩f−1[{i}] dx), (2) ∆

f,t
i (S) is non-decreasing in t. Such a family

of strategy profiles is called a weak one-round walk starting from the empty state.
Observe that ∆f,t

i (S) has to be necessarily a non-decreasing and Lipschitzian
function with respect to t. Informally, a weak one-round walk models a family
of strategy profiles generated by a flow of players sequentially selecting their
strategies, in such a way, for any t ∈ [0,M ], there is an amount ∆f,t

i (S) of players
of type i which have already selected strategy S (Point 1), and these players
cannot change their strategy (Point 2). Moreover, observe that f defines the
ordering in which the players appear in the game.
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A weak one-round walk is simple if t ≤ t′ ⇒ f(t) ≤ f(t′), and, for each i ∈ N,
there exists a strategy Si ∈ Σi such that ∆f,M

i (Si) =
∫
f−1[{i}] dx. Informally, a

weak one-round walk is simple if all players select their strategy according to
the ordering by which their types are defined in N, and if players of the same
type play the same strategy. A simple weak one-round walk can be univocally
represented as a sequence of strategies (Si)i∈N such that Si is the strategy played
by a player of type i. The strategy profile generated by a weak one-round walk
is ∆f,M .

A weak one-round walk (∆f,t)t∈[0,M ] is an ε-approximate non-atomic one-
round walk starting from the empty state (ε-one-round walk, for brevity) if, for any
t ∈ [0,M ] ,∆f,t

f(t)(S) is right-increasing at t only if strategy S is an ε-best-response
in ∆f,t for player f(t). Informally, an ε-one-round walk is a weak one-round walk
in which all players sequentially select an ε-best-response.

Efficiency Metrics. A social function that is usually used as a measure of the
quality of a strategy profile in non-atomic congestion games, is the total latency,
defined as TL(∆) =

∑
i∈N,Si∈Σ ∆i(Si) · cSi

(∆) =
∑
e∈E ke(∆) · `e(ke(∆)). A

social optimum is a strategy profile ∆∗ minimizing TL. The approximation ratio
of ε-approximate non-atomic one-round walks starting from the empty state (ε-
approximation ratio, for brevity) of a congestion game CG (resp. a class of
congestion games) with respect to the total latency is the supremum of the ratio
TL(∆)/TL(∆∗), where ∆ is the strategy profile generated by an ε-one-round
walk for CG (resp. for some game CG in the class) and ∆∗ is a social optimum
for CG.

Taxes. A dynamic tax-function T := (Te)e∈E is a class of functions Te : R≥0 →
R≥0 increasing the latency function perceived by each player. The presence of
T determines a new congestion game CG(T ) = (N, E, (`′e)e∈E , (ri)i∈N, (Σi)i∈N),
equal to CG except the latency functions, such that `′e(x) := `e(x) + Te(x) for
each e ∈ E. However, the total latency function is still evaluated with respect to
the initial latency functions `es. T is a static tax-function if each Te is a constant
function (with respect to the resource congestion).

3 Approximation Ratio of One-Round Walks

3.1 Upper Bound

We prove our upper bound on the ε-approximation ratio by using the primal-dual
method: a technique introduced by Bilò in [5] to prove bounds on the performance
guarantee of self-emerging solutions (such as approximate pure Nash equilibria
and their generalizations, approximate one-round walks, and so on) in atomic
and non-atomic congestion games.

In our setting, we want to establish an upper bound on the worst-case per-
formance guarantee of ε-one-round walks with respect to the total latency in the
class of polynomial congestion games. For a general, but fixed, congestion game
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CG, the method requires the construction of a linear program LP(CG) based on
the following steps: (1) the objective function is TL(∆), where ∆ is the strategy
profile generated by an arbitrary fixed ε-one-round walk for CG, (2) add the
constraint TL(∆∗) = 1, where ∆∗ is an arbitrary fixed social optimal for CG, (3)
relate ∆ and ∆∗ by adding, for each i ∈ N, suitable constraints that need to be
satisfied by the choices performed by all players of type i, (4) the coefficients of
the latency functions are treated as variables, while all the other quantities (e.g.
resources congestions) are treated as fixed parameters.

By the generality of CG, it follows that the optimal solution of LP(CG) is
an upper bound on the ε-approximation ratio in polynomial congestion games.
By the weak-duality theorem [9], any feasible solution to the dual formulation
of LP(CG) yields an upper bound on the ε-approximation ratio in polynomial
congestion games. The more the constraints defined during step (3) provide an
accurate characterization of the properties of ε-one-round walks, the more the
achieved upper bound will be significant (and possibly tight).

Theorem 1. The approximation ratio of ε-approximate one-round walks starting
from the empty state in congestion games with polynomial latency functions of
degree p is at most ((1 + ε)(p+ 1))p+1.

Proof. For an integer p ≥ 1, fix a congestion game CG having polynomial la-
tencies of degree p. Let f be an ordering function such that (∆f,t)t∈[0,M ] is an
ε-approximate one-round walk starting from the empty state, and let ∆ := ∆f,M .
Let ∆∗ be an optimal strategy profile, and let (o(t))t∈[0,M ] be a family of strate-
gies such that o(t) is right-continuous with respect to t, o(t) is a strategy of player
f(t) and

∫
o−1[{S}]∩f−1[{i}] dt = ∆∗i (S). Observe that such a family of strategies

always exists. For the sake of conciseness, we set ke := ke(∆) and oe := ke(∆∗).
By applying the primal-dual method, we get the following linear program LP(CG):

max
∑
e∈E

p∑
d=0

αe,dk
d+1
e︸ ︷︷ ︸

TL(∆)

(1)

s.t. cε(S∗, o(t),∆f,t) ≤ 0, ∀S∗ ∈ Σε
f(t)(∆f,t), ∀t ∈ [0,M ] (2)∑

e∈E

p∑
d=0

αe,do
d+1
e︸ ︷︷ ︸

TL(∆∗)

= 1 (3)

αe,d ≥ 0, ∀e ∈ E,∀d ∈ [p]0 (4)

where Σε
i(∆′) is the set of all ε-best-responses of players of type i in a strategy

profile ∆′, and cε(S, S′,∆′) is defined as follows:

cε(S, S′,∆′) :=
∑
e∈S

p∑
d=0

αe,dk
d
e (∆′)︸ ︷︷ ︸

cS(∆′)

−(1 + ε)
∑
e∈S′

p∑
d=0

αe,dk
d
e (∆′)︸ ︷︷ ︸

cS′ (∆′)

(5)
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The constraints (2) come from the definition of ε-best-responses and ε-one-round
walks. By replacing constraint (2) with

ĉε(S∗, o(t),∆f,t) :=
∑
e∈S∗

p∑
d=0

αe,dk
d
e (∆f,t)− (1 + ε)

∑
e∈o(t)

p∑
d=0

αe,dk
d
e (∆) ≤ 0 (6)

we obtain a relaxation of LP(CG). Given i ∈ N and S ∈ Σi \ ∅i, ĉε(S, o(t),∆f,t)
can be defined as a function of ∆f,t

i (S) except for the intervals on which ∆f,t
i (S)

is constant. By exploiting (6), we obtain

0 ≥
∑

i∈N,S∈Σi

∫ ∆i(S)

0
ĉε(S, o(t),∆f,t)d(∆f,t

i (S)) (7)

=
∑
e∈E

p∑
d=0

αe,d

∫ ke

0
kde (∆f,t)d

 ∑
i∈N,S∈Σi:e∈S

(
∆f,t
i (S)

) (8)

− (1 + ε)
∫ M

0

 ∑
e∈o(t)

p∑
d=0

αe,dk
d
e

 dt (9)

=
∑
e∈E

p∑
d=0

αe,d

∫ ke

0
kde (∆f,t)d(ke(∆f,t))− (1 + ε)

∑
e∈E

∫
{t:e∈o(t)}

(
p∑
d=0

αe,dk
d
e

)
dt

(10)

=
∑
e∈E

p∑
d=0

αe,d

∫ ke

0
kddk − (1 + ε)

∑
e∈E

∫ oe

0

(
p∑
d=0

αe,dk
d
e

)
dk (11)

=
∑
e∈E

p∑
d=0

αe,d
ke
d+1

d+ 1 − (1 + ε)
∑
e∈E

oe

p∑
d=0

αe,dk
d
e (12)

The equivalences between all pairs of integrals in the above derivation (along
with the fact that they are well-defined) come from the properties of the ∆f,t

i (S)s
as functions of t, and, more generally, from the Lebesgue theory of integration
[28]. In conclusion, by replacing the left-hand side of (2) with (12), we obtain the
following relaxation of LP(CG):

max
∑
e∈E

p∑
d=0

αe,dk
d+1
e (13)

s.t.
∑
e∈E

p∑
d=0

αe,d
ke
d+1

d+ 1 − (1 + ε)
∑
e∈E

oe

p∑
d=0

αe,dk
d
e ≤ 0 (14)

∑
e∈E

p∑
d=0

αe,do
d+1
e = 1 (15)

αe,d ≥ 0, ∀e ∈ E,∀d ∈ [p]0 (16)
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The dual of this problem is the following linear problem LP′(CG):

min γ (17)

s.t. x

(
kd+1
e

d+ 1 − (1 + ε)oekde
)

+ γod+1
e ≥ kd+1

e ∀e ∈ E, d ∈ [p]0 (18)

x, γ ≥ 0 (19)

Clearly, any feasible solution for LP′(CG) is an upper bound on the ε-approxima-
tion ratio. We show that, by setting γ := ((1 + ε)(p+ 1))p+1 and x := (p+ 1)2,
the constraints (18) are always satisfied. Indeed, if oe = 0, the constraints (18)
are satisfied. Conversely, if oe > 0, by rewriting the constraints (18) in terms of
the quantity te := ke/oe, we get the following inequality:

g(te, d) := −td+1
e + (p+ 1)2

(
td+1
e

d+ 1 − (1 + ε)tde
)

+ ((1 + ε)(p+ 1))p+1 ≥ 0 (20)

for each e ∈ E, d ∈ [p]0 and te ≥ 0. This inequality is always satisfied for each
d ∈ [p]0 and te ≥ 0 (see the full version), and this fact completes the proof of the
theorem. ut

3.2 Lower Bound
Theorem 2. For each δ > 0 there exists a congestion game having polynomial
latency functions of degree p such that the approximation ratio of ε-approximate
one-round walks starting from the empty state is higher than ((1+ε)(p+1))p+1−δ.
Proof. Let n,m ∈ N and q := b(1 + ε)(p+ 1)nc − 1. Let CGm,n be a congestion
game such that the set of players’ types is N := {a∗1 . . . , a∗q+1, a

′
1, a1, . . . , a

′
m, am},

the set of resources is E := {e1, . . . , en+m+q−1}, the amount of players of type
a∗1 and types a′is is 2, while the amount of players of the remaining types is 1.
Players of type a∗i can only select the strategy s∗i := {e1, e2, . . . , en+i−2}, players
of type a′i can only select the strategy s′i := {en+i−1}, and players of type ai
can select si := {en+i, en+i+1, . . . , en+i+q−1} or oi := {ei, ei+1, . . . , en+i−1}. The
latency function is `e(ke) := kpe/n

p+1 for each resource e ∈ E.
Consider the simple weak one-round walk

(∆f,t)t∈[0,M ] := (s∗1 . . . , s∗q+1, s
′
1, s1, . . . , s

′
m, sm).

To prove that (∆f,t)t∈[0,M ] is an ε-one-round walk it is sufficient to show that si
is an ε-best-response in ∆f,t for each t such that f(t) = ai. Given such a t, we
get

csi
(∆f,t) ≤

q∑
j=1

jp

np+1 ≤
∫ (1+ε)(p+1)n

0

1
n

(x
n

)p
dx =

∫ (1+ε)(p+1)

0
ypdy (21)

= (1 + ε)p+1(p+ 1)p ≤ (1 + ε)
(
q + 2
n

)p
(22)

= (1 + ε)n 1
n

(
q + 2
n

)p
= (1 + ε)coi

(∆f,t) (23)
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We conclude that si is an ε-best-response in the strategy profile ∆f,t for a player
of type ai = f1(t). Therefore, (∆f,t)t∈[0,M ] is an ε-one-round walk, and generates
a strategy profile ∆m,n in which all players of type ai select the strategy si. Let
∆∗m,n be the strategy profile in which each player of type ai selects the strategy
oi.

t1 t2 t30 M

1

2
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Fig. 1. The figure depicts a lower bounding instance with n = 4, m = 6, `(ke) = ke/4
and ε = 0.4. Observe that q = b1.4 · 2 · 4c − 1 = 10 and the total amount of players is
M = 3m + 2 + q = 30. The abscissa represents the amount of players which already
selected their strategy, and the ordinate represents the resources. The ordinate values of
coloured squares having abscissa x ∈ [30] denote the strategies of all players of type f(t)
with t ∈ [x−1, x). The squares labeled with a cross/a black square/a dark grey square/a
tic are related to the resources selected in the the strategies s∗i /s′i/oi/si. For instance,
when an amount t1/t2/t3 of players have already entered in the game, a player of type
a∗4/a2/a′4 can select the strategy s∗4 = {e1, e2, . . . , e6} (crosses)/s2 = {e6, e7, . . . , e15}
(tics) or o2 = {e2, e3, . . . , e5} (dark grey squares)/s′4 = {e7} (black squares).

We get (o(m) is related to the usual asymptotic notation):

lim
n→∞

lim
m→∞

TL(∆m,n)
TL(∆∗m,n) ≥ lim

n→∞
lim
m→∞

q 1
n

(
q
n

)p (m− o(m)) + o(m)(
n+2
n

)p+1 (m− o(m)) + o(m)
(24)

= lim
n→∞

( q
n

)p+1
= lim
n→∞

(
b(1 + ε)(p+ 1)nc − 1

n

)p+1

(25)
= ((1 + ε)(p+ 1))p+1. (26)

which completes the proof. ut
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4 Efficiency of Taxation

In the following theorems, we prove that by resorting to static or dynamic taxation
the ε-approximation ratio can be consistently lowered.
Theorem 3. The approximation ratio of ε-approximate one-round walks starting
from the empty state in congestion games with polynomial latency functions of
degree p is at most (1 + ε)p+1(p+ 1)p by resorting to the static tax-function:

Te := αe,po
p
eξ, with ξ := (1 + ε)p(p+ 1)p−1

p
. (27)

Proof. For an integer p ≥ 1, fix a congestion game CG(T ), where T is the tax-
function defined in (27). Define (∆f,t)t∈[0,M ], o(t), ∆, ∆∗, ke and oe as in the
proof of Theorem 1. As done in the proof of Theorem 1, by applying the primal-
dual method and by relaxing the constraints modelling ε-best-responses (which
take into account taxation in this case), we get the following linear program:

max
∑
e∈E

p∑
d=0

αe,dk
d+1
e (28)

s.t.
∑
e∈E

(
p∑
d=0

αe,d

(
ke
d+1

d+ 1 − (1 + ε)oekde

)
+ αe,p

(
opeξke − op+1

e ξ
))
≤ 0

(29)∑
e∈E

p∑
d=0

αe,do
d+1
e = 1 (30)

αe,d ≥ 0, ∀e ∈ E,∀d ∈ [p]0 (31)

The dual program is

min γ (32)

s.t. x

(
kd+1
e

d+ 1 − (1 + ε)oekde
)

+ γod+1
e ≥ kd+1

e ∀e ∈ E, d ∈ [p− 1]0 (33)

x

(
kp+1
e

p+ 1 + ξopeke − (1 + ε)oe (kpe + ξope)
)

+ γop+1
e ≥ kp+1

e ∀e ∈ E (34)

x, γ ≥ 0 (35)

By setting γ := (1 + ε)p+1(p + 1)p and x := (p + 1)p, the constraints (33) and
(34) are satisfied (see the full version), and the claim follows. ut

Theorem 4. The approximation ratio of ε-approximate one-round walks starting
from the empty state in congestion games with polynomial latency functions of
degree p is at most (1 + ε)p+1(p + 1)! by resorting to the dynamic tax-function
(set (d)j := d!/(d− j)!):

Te(ke) :=
p∑
d=0

αe,dTe,d(ke) with Te,d(ke) :=
d∑
j=1

(1 + ε)j(d)jkd−je oje (36)
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Proof. By reconsidering the proof of Theorem 3, but with the tax (36) instead
of the tax (27), we get a dual program having the following constraints:

− kd+1
e + x

(
kd+1
e

d+ 1 +
∫ ke

0
Te,d(u)du− (1 + ε)oe(kde + Te,d(k))

)
+ γod+1

e ≥ 0

(37)
for each e ∈ E and d ∈ [p]0. These constraints are always satisfied if x := p+ 1
and γ := (1 + ε)p+1(p+ 1)! (see the full version), and the claim follows. ut

Remark 1. Observe that finding an optimal strategy profile requires to solve a
convex minimization problem. Therefore, for each δ > 0, one can compute in
polynomial time a strategy profile whose social value is at most 1 + δ times the
social optimum [9]. Then, if õe is the congestion of resource e in that strategy
profile, by using the tax (27) (resp. (36)) with õe in place of oe, one can easily
prove that the resulting ε-approximation ratio is at most (1 + δ) times that of
Theorem 3 (resp. Theorem 4).
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Abstract. We address the problem of Conjunctive Query Answering
(CQA) for the description logic DL〈4LQSR,×〉(D) (DL4,×

D , for short) which
extends the logic DL〈4LQSR〉(D) with Boolean operations on concrete
roles and with the product of concepts.
The result is obtained by formalizing DL4,×

D -knowledge bases and DL4,×
D -

conjunctive queries in terms of formulae of the four-level set-theoretic
fragment 4LQSR, which admits a restricted form of quantification on
variables of the first three levels and on pair terms. We solve the CQA
problem for DL4,×

D through a decision procedure for the satisfiability
problem of 4LQSR. We further define a KE-tableau based procedure
for the same problem, more suitable for implementation purposes, and
analyze its computational complexity.

1 Introduction

In the last few years, results from Computable Set Theory have been used as a
means to represent and reason about description logics and rule languages for
the semantic web. For instance, in [4–6], fragments of set theory with constructs
related to multi-valued maps have been studied and applied to the realm of knowl-
edge representation. In [8], an expressive description logic, called DL〈MLSS×2,m〉,
has been introduced and the consistency problem for DL〈MLSS×2,m〉-knowledge
bases has been proved NP-complete. The description logic DL〈MLSS×2,m〉 has
been extended with additional constructs and SWRL rules in [6], proving that
the decision problem for the resulting logic, called DL〈∀π0,2〉, is still NP-complete
under suitable conditions. The description logic DL〈∀π0,2〉 has been extended with
some metamodelling features in [4]. In [7], the description logic DL〈4LQSR〉(D)
(more simply referred to as DL4

D) has been introduced. DL4
D can be represented
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in the decidable four-level stratified fragment of set theory 4LQSR involving a
restricted form of quantification over variables of the first three levels and pair
terms (cf. [2]). The logic DL4

D admits concept constructs such as full negation,
union and intersection of concepts, concept domain and range, existential quan-
tification and min cardinality on the left-hand side of inclusion axioms. It also
supports role constructs such as role chains on the left hand side of inclusion
axioms, union, intersection, and complement of abstract roles, and properties
on roles such as transitivity, symmetry, reflexivity, and irreflexivity. It admits
datatypes, a simple form of concrete domains that are relevant in real world
applications.

The consistency problem for DL4
D-knowledge bases has been proved decidable

in [7] by means of a reduction to the satisfiability problem for 4LQSR, proved
decidable in [2]. It has also been proved, under not very restrictive constraints,
that the consistency problem for DL4

D-knowledge bases is NP-complete. The
latter result has practical outcomes since, for example, the ontology Ontoceramic
[9] can be expressed in such a restricted version of DL4

D. Finally, we mention that
the papers [4–8] are concerned with traditional research issues for description
logics mainly focused on the parts of a knowledge base representing conceptual
information, namely the TBox and the RBox, where the principal reasoning
services are subsumption and satisfiability.

In this paper we exploit decidability results presented in [2, 7] to deal with
reasoning services for knowledge bases involving ABoxes. The most basic service
to query the instance data is instance retrieval, i.e., the task of retrieving all
individuals that instantiate a class C, and, dually, all named classes C that an
individual belongs to. In particular, a powerful way to query ABoxes is the
Conjunctive Query Answering task (CQA). CQA is relevant in the context of
description logics and, in particular, for real world applications based on semantic
web technologies, since it provides a mechanism allowing users and applications
to interact with ontologies and data. The task of CQA has been studied for
several well-known description logics (cf. [1, 13,15]).

In particular, we introduce the description logic DL〈4LQSR,×〉(D) (DL4,×
D , for

short), extending DL4
D with Boolean operations on concrete roles and with the

product of concepts. Then we define the CQA problem for DL4,×
D and prove its

decidability via a reduction to the CQA problem for 4LQSR, whose decidability
follows from that of the satisfiability problem for 4LQSR (proved in [2]). Finally,
we present a KE-tableau based procedure that, given a DL4,×

D -query Q and a
DL4,×

D -knowledge base KB represented in set-theoretic terms, determines the
answer set of Q with respect to KB, providing also some complexity results. The
choice of the KE-tableau system [10] is motivated by the fact that this variant
of the tableau method allows one to construct trees whose distinct branches
define mutually exclusive situations thus avoiding the proliferation of redundant
branches, typical of semantic tableaux.
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2 Preliminaries

2.1 The set-theoretic fragment 4LQSR

It is convenient to first introduce the syntax and semantics of a more general
four-level quantified language, denoted 4LQS. Then we provide some restrictions
on quantified formulae of 4LQS that characterize 4LQSR. We recall that the
satisfiability problem for 4LQSR has been proved decidable in [2].

4LQS involves four collections, Vi, of variables of sort i, for i = 0, 1, 2, 3.
Variables of sort i, for i = 0, 1, 2, 3, will be denoted byXi, Y i, Zi, . . . (in particular,
variables of sort 0 will also be denoted by x, y, z, . . .). In addition to variables,
4LQS involves also pair terms of the form 〈x, y〉, with x, y ∈ V0.
4LQS-quantifier-free atomic formulae are classified as:
- level 0: x = y, x ∈ X1, 〈x, y〉 = X2, 〈x, y〉 ∈ X3;
- level 1: X1 = Y 1, X1 ∈ X2;
- level 2: X2 = Y 2, X2 ∈ X3.

4LQS purely universal formulae are classified as:
- level 1: (∀z1) . . . (∀zn)ϕ0, where z1, . . . , zn ∈ V0 and ϕ0 is any propositional
combination of quantifier-free atomic formulae of level 0;

- level 2: (∀Z1
1 ) . . . (∀Z1

m)ϕ1, where Z1
1 , . . . , Z

1
m ∈ V1 and ϕ1 is any propositional

combination of quantifier-free atomic formulae of levels 0 and 1, and of purely
universal formulae of level 1;

- level 3: (∀Z2
1 ) . . . (∀Z2

p)ϕ2, where Z2
1 , . . . , Z

2
p ∈ V2 and ϕ2 is any proposi-

tional combination of quantifier-free atomic formulae and of purely universal
formulae of levels 1 and 2.

4LQS-formulae are all the propositional combinations of quantifier-free atomic
formulae of levels 0, 1, 2 and of purely universal formulae of levels 1, 2, 3.

Let ϕ be a 4LQS-formula. Without loss of generality, we can assume that
ϕ contains only ¬, ∧, ∨ as propositional connectives. Further, let Sϕ be the
syntax tree for a 4LQS-formula ϕ,1 and let ν be a node of Sϕ. We say that a
4LQS-formula ψ occurs within ϕ at position ν if the subtree of Sϕ rooted at ν
is identical to Sψ. In this case we refer to ν as an occurrence of ψ in ϕ and to
the path from the root of Sϕ to ν as its occurrence path. An occurrence of ψ
within ϕ is positive if its occurrence path deprived by its last node contains an
even number of nodes labelled by a 4LQS-formula of type ¬χ. Otherwise, the
occurrence is said to be negative.

The variables z1, . . . , zn are said to occur quantified in (∀z1) . . . (∀zn)ϕ0. Like-
wise, Z1

1 , . . . , Z
1
m and Z2

1 , . . . , Z
2
p occur quantified in (∀Z1

1 ) . . . (∀Z1
m)ϕ1 and in

(∀Z2
1 ) . . . (∀Z2

p)ϕ2, respectively. A variable occurs free in a 4LQS-formula ϕ if it
does not occur quantified in any subformula of ϕ. For i = 0, 1, 2, 3, we denote
with Vari(ϕ) the collections of variables of level i occurring free in ϕ.
1 The notion of syntax tree for 4LQS-formulae is similar to the notion of syntax tree
for formulae of first-order logic. A precise definition of the latter can be found in [11].
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A (level 0) substitution σ := {x1/y1, . . . , xn/yn} is the mapping ϕ 7→ ϕσ such
that, for any given 4LQS-formula ϕ, ϕσ is the 4LQS-formula obtained from ϕ by
replacing the free occurrences of the variables x1, . . . , xn in ϕ with the variables
y1, . . . , yn, respectively. We say that a substitution σ is free for ϕ if the formulae
ϕ and ϕσ have exactly the same occurrences of quantified variables.

A 4LQS-interpretation is a pair M = (D,M) where D is a non-empty collec-
tion of objects (called domain or universe of M) and M is an assignment over
the variables in Vi, for i = 0, 1, 2, 3, such that: MX0 ∈ D,MX1 ∈ P(D),MX2 ∈
P(P(D)),MX3 ∈ P(P(P(D))), where Xi ∈ Vi, for i = 0, 1, 2, 3, and P(s) de-
notes the powerset of s.
Pair terms are interpreted à la Kuratowski, and therefore we put

M〈x, y〉 := {{Mx}, {Mx,My}}.
Next, let
- M = (D,M) be a 4LQS-interpretation,
- x1, . . . , xn ∈ V0, X1

1 , . . . , X
1
m ∈ V1, X2

1 , . . . , X
2
p ∈ V2, and

- u1, . . . , un ∈ D, U1
1 , . . . , U

1
m ∈ P(D), U2

1 , . . . , U
2
p ∈ P(P(D)).

By M[~x/~u, ~X1/~U1, ~X2/~U2], we denote the interpretation M′ = (D,M ′) such
that M ′xi = ui (for i = 1, . . . , n), M ′X1

j = U1
j (for j = 1, . . . ,m), M ′X2

k =
U2
k (for k = 1, . . . , p), and which otherwise coincides with M on all remaining

variables. For a 4LQS-interpretation M = (D,M) and a 4LQS-formula ϕ, the
satisfiability relationship M |= ϕ is defined inductively over the structure of
ϕ as follows. Quantifier-free atomic formulae are evaluated in a standard way
according to the usual meaning of the predicates ‘∈’ and ‘=’, and purely universal
formulae are evaluated as follows:
- M |= (∀z1) . . . (∀zn)ϕ0 iff M[~z/~u] |= ϕ0, for all ~u ∈ Dn;
- M |= (∀Z1

1 ) . . . (∀Z1
m)ϕ1 iff M[~Z1/~U1] |= ϕ1, for all ~U1 ∈

(
P(D)

)m;

- M |= (∀Z2
1 ) . . . (∀Z2

p)ϕ2 iff M[~Z2/~U2] |= ϕ2, for all ~U2 ∈
(
P(P(D))

)p.
Finally, compound formulae are interpreted according to the standard rules of
propositional logic. If M |= ϕ, then M is said to be a 4LQS-model for ϕ. A
4LQS-formula is said to be satisfiable if it has a 4LQS-model. A 4LQS-formula is
valid if it is satisfied by all 4LQS-interpretations.

We are now ready to present the fragment 4LQSR of 4LQS of our interest.
This is the collection of the formulae ψ of 4LQS fulfilling the restrictions:
1. for every purely universal formula (∀Z1

1 ) . . . (∀Z1
m)ϕ1 of level 2 occurring in

ψ and every purely universal formula (∀z1) . . . (∀zn)ϕ0 of level 1 occurring
negatively in ϕ1, ϕ0 is a propositional combination of quantifier-free atomic
formulae of level 0 and the condition

¬ϕ0 →
∧n
i=1

∧m
j=1 zi ∈ Z1

j

is a valid 4LQS-formula (in this case we say that (∀z1) . . . (∀zn)ϕ0 is linked
to the variables Z1

1 , . . . , Z
1
m);

2. for every purely universal formula (∀Z2
1 ) . . . (∀Z2

p)ϕ2 of level 3 in ψ:
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- every purely universal formula of level 1 occurring negatively in ϕ2 and
not occurring in a purely universal formula of level 2 is only allowed to
be of the form

(∀z1) . . . (∀zn)¬(
n∧
i=1

n∧
j=1
〈zi, zj〉 = Y 2

ij),

with Y 2
ij ∈ V2, for i, j = 1, . . . , n;

- purely universal formulae (∀Z1
1 ) . . . (∀Z1

m)ϕ1 of level 2 may occur only
positively in ϕ2.

Restriction 1 has been introduced for technical reasons concerning the decid-
ability of the satisfiability problem for the fragment, while restriction 2 allows
one to define binary relations and several operations on them (for space reasons
details are not included here but can be found in [2]).

The semantics of 4LQSR plainly coincides with that of 4LQS.

2.2 The logic DL〈4LQSR,×〉(D)

The description logic DL〈4LQSR,×〉(D) (more simply referred to as DL4,×
D ) is

the extension of the logic DL〈4LQSR〉(D) (for short DL4
D) presented in [7] in

which Boolean operations on concrete roles and the product of concepts are
admitted. Analogously to DL4

D, the logic DL4,×
D supports concept constructs

such as full negation, union and intersection of concepts, concept domain and
range, existential quantification and min cardinality on the left-hand side of
inclusion axioms, role constructs such as role chains on the left hand side of
inclusion axioms, union, intersection, and complement of roles, and properties
on roles such as transitivity, symmetry, reflexivity, and irreflexivity.

As far as the construction of role inclusion axioms is concerned, DL4,×
D is

more liberal than SROIQ(D) [12] (the logic underlying the most expressive
Ontology Web Language 2 profile, OWL 2 DL [16]), since the roles involved are
not required to be subject to any ordering relationship, and the notion of simple
role is not needed. DL4,×

D treats derived datatypes by admitting datatype terms
constructed from data ranges by means of a finite number of applications of
the Boolean operators. Basic and derived datatypes can be used inside inclusion
axioms involving concrete roles.

Datatypes are defined according to [14] as follows. Let D = (ND, NC , NF , ·D)
be a datatype map, where ND is a finite set of datatypes, NC is a map assigning
a set of constants NC(d) to each datatype d ∈ ND, NF is a map assigning a
set of facets NF (d) to each d ∈ ND, and ·D is a map assigning (i) a datatype
interpretation dD to each datatype d ∈ ND, (ii) a facet interpretation fD ⊆ dD

to each facet f ∈ NF (d), and (iii) a data value eD
d ∈ dD to every constant

ed ∈ NC(d). We shall assume that the interpretations of the datatypes in ND
are non-empty pairwise disjoint sets.

A facet expression for a datatype d ∈ ND is a formula ψd constructed from
the elements of NF (d) ∪ {>d,⊥d} by applying a finite number of times the
connectives ¬, ∧, and ∨. The function ·D is extended to facet expressions for
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d ∈ ND by putting >D
d = dD, ⊥D

d = ∅, (¬f)D = dD \ fD, (f1 ∧ f2)D = fD
1 ∩ fD

2 ,
and (f1 ∨ f2)D = fD

1 ∪ fD
2 , for f, f1, f2 ∈ NF (d).

A data range dr for D is either a datatype d ∈ ND, or a finite enumeration
of datatype constants {ed1 , . . . , edn}, with edi ∈ NC(di) and di ∈ ND, or a facet
expression ψd, for d ∈ ND, or their complementation.

Let RA, RD, C, Ind be denumerable pairwise disjoint sets of abstract role
names, concrete role names, concept names, and individual names, respectively.
We assume that the set of abstract role names RA contains a name U denoting
the universal role.
(a) DL4,×

D -datatype, (b) DL4,×
D -concept, (c) DL4,×

D -abstract role, and (d) DL4,×
D -

concrete role terms are constructed according to the following syntax rules:
(a) t1, t2 −→ dr | ¬t1 | t1 u t2 | t1 t t2 | {ed} ,
(b) C1, C2 −→ A | > | ⊥ | ¬C1 | C1 t C2 | C1 u C2 | {a} | ∃R.Self |∃R.{a}|∃P.{ed} ,
(c) R1, R2 −→ S | U | R−1 | ¬R1 | R1 tR2 | R1 uR2 | RC1| | R|C1 | RC1 | C2 | id(C) |

C1 × C2 ,

(d) P1, P2 −→ T | ¬P1 | P1 t P2 | P1 u P2 | PC1| | P|t1 | PC1|t1 ,

where dr is a data range for D, t1, t2 are data-type terms, ed is a constant in
NC(d), a is an individual name, A is a concept name, C1, C2 are DL4,×

D -concept
terms, S is an abstract role name, R,R1, R2 are DL4,×

D -abstract role terms, T is
a concrete role name, and P, P1, P2 are DL4,×

D -concrete role terms.
A DL4,×

D -knowledge base is a triple KB = (R, T ,A) such that R is a DL4,×
D -

RBox, T is a DL4,×
D -TBox, and A a DL4,×

D -ABox (see next).
A DL4,×

D -RBox is a collection of statements of the following forms:
R1 ≡ R2, R1 v R2, R1 . . . Rn v Rn+1, Sym(R1), Asym(R1), Ref(R1), Irref(R1),

Dis(R1, R2), Tra(R1), Fun(R1), R1 ≡ C1 × C2, P1 ≡ P2, P1 v P2, Dis(P1, P2), Fun(P1),
where R1, R2 are DL4,×

D -abstract role terms, C1, C2 are DL4,×
D -abstract concept

terms, and P1, P2 are DL4,×
D -concrete role terms. Any expression of the type

w v R, where w is a finite string of DL4,×
D -abstract role terms and R is an

DL4,×
D -abstract role term is called a role inclusion axiom (RIA).
Next, a DL4,×

D -TBox is a set of statements of the types:
C1 ≡ C2, C1 v C2, C1 v ∀R1.C2, ∃R1.C1 v C2, ≥nR1.C1 v C2, C1 v ≤nR1.C2,
t1 ≡ t2, t1 v t2, C1 v ∀P1.t1, ∃P1.t1 v C1, ≥nP1.t1 v C1, C1 v ≤nP1.t1,
where C1, C2 are DL4,×

D -concept terms, t1, t2 datatype terms,R1 a DL4,×
D -abstract

role term, and P1 a DL4,×
D -concrete role term. Any statement C v D, with C

and D DL4,×
D -concept terms, is a general concept inclusion axiom (GCI).

Finally, a DL4,×
D -ABox is a set of individual assertions of the forms: a : C1,

(a, b) : R1, a = b, ed : t1, (a, ed) : P1, with a, b individual names, C1 a DL4,×
D -

concept term,R1 a DL4,×
D -abstract role term, d a datatype, ed a constant inNC(d),

t1 a datatype term, and P1 a DL4,×
D -concrete role term. As mentioned above,

DL4,×
D is more liberal than SROIQ(D) in the construction of role inclusion

axioms. For example, the role hierarchy {RS v S,RT v R, V T v T, V S v V }
presented in [12] is expressible in DL4,×

D , but not in SROIQ(D).
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The semantics of DL4,×
D is based on interpretations I = (∆I, ∆D, ·I), where ∆I

and ∆D are non-empty disjoint domains such that dD ⊆ ∆D, for every d ∈ ND,
and ·I is an interpretation function. The interpretation of concepts and roles,
and of axioms and assertions is illustrated in [3, Table 1].

Let KB = (R, T ,A) be a DL4,×
D -knowledge base. An interpretation I =

(∆I, ∆D, ·I) is a D-model of R (and write I |=D R) if I satisfies each axiom in
R according to the semantic rules in [3, Table 1]. Similar definitions hold for T
and A too. Then I satisfies KB (and write I |=D KB) if it is a D-model of R, T ,
and A. A knowledge base is consistent if it is satisfied by some interpretation.

3 Conjunctive Query Answering for DL4,×
D

Let V = {v1, v2, . . .} be a denumerable and infinite set of variables disjoint from
Ind and from

⋃
{NC(d) : d ∈ ND}. A DL4,×

D -atomic formula is an expression of
of the following types

R(w1, w2), P (w1, u1), C(w1), w1 = w2, u1 = u2,
where w1, w2 ∈ V ∪ Ind, u1, u2 ∈ V ∪

⋃
{NC(d) : d ∈ ND}, R is a DL4,×

D -
abstract role term, P is a DL4,×

D -concrete role term, and C is a DL4,×
D -concept

term. A DL4,×
D -atomic formula containing no variables is said to be closed. A

DL4,×
D -literal is a DL4,×

D -atomic formula or its negation. A DL4,×
D -conjunctive

query is a conjunction of DL4,×
D -literals. Let v1, . . . , vn ∈ V and o1, . . . , on ∈

Ind ∪
⋃
{NC(d) : d ∈ ND}. A substitution σ := {v1/o1, . . . , vn/on} is a map

such that, for every DL4,×
D -literal L, Lσ is obtained from L by replacing the

occurrences of v1, . . . , vn in L with o1, . . . , on, respectively. Substitutions can be
extended to DL4,×

D -conjunctive queries in the usual way. Let Q := (L1∧ . . .∧Lm)
be a DL4,×

D -conjunctive query, and KB a DL4,×
D -knowledge base. A substitution

σ involving exactly the variables occurring in Q is a solution for Q w.r.t. KB
if there exists a DL4,×

D -interpretation I such that I |=D KB and I |=D Qσ. The
collection Σ of the solutions for Q w.r.t. KB is the answer set of Q w.r.t. KB.
Then the conjunctive query answering (CQA) problem for Q w.r.t. KB consists
in finding the answer set Σ of Q w.r.t. KB.

We shall solve the CQA problem just stated by reducing it to the analo-
gous problem formulated in the context of the fragment 4LQSR (and in turn
to the decision procedure for 4LQSR presented in [2]). The CQA problem for
4LQSR-formulae can be stated as follows. Let φ be a 4LQSR-formula and let ψ
be a conjunction of 4LQSR-quantifier-free atomic formulae of level 0 of the types
x = y, x ∈ X1, 〈x, y〉 ∈ X3 or their negations, such that Var0(ψ) ∩ Var0(φ) = ∅
and Var1(ψ) ∪ Var3(ψ) ⊆ Var1(φ) ∪ Var3(φ). The CQA problem for ψ w.r.t. φ
consists in computing the answer set of ψ w.r.t. φ, namely the collection Σ′ of
all the substitutions σ′ := {x1/y1, . . . , xn/yn} (where x1, . . . , xn are the distinct
variables of level 0 in ψ and {y1, . . . , yn} ⊆ Var0(φ)) such that M |= φ ∧ ψσ′,
for some 4LQSR-interpretation M. In view of the decidability of the satisfia-
bility problem for 4LQSR-formulae, the CQA problem for 4LQSR-formulae is
decidable as well. Indeed, given two 4LQSR-formulae φ and ψ satisfying the
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above requirements, to compute the answer set of ψ w.r.t. φ, for each candi-
date substitution σ′ := {x1/y1, . . . , xn/yn} (with {x1, . . . , xn} = Var0(ψ) and
{y1, . . . , yn} ⊆ Var0(φ)) one has just to test for satisfiability the 4LQSR-formula
φ∧ψσ′. Since the number of possible candidate substitutions is |Var0(φ)||Var0(ψ)|

and the satisfiability problem for 4LQSR-formulae is the decidable, it follows that
the answer set of ψ w.r.t. φ can be computed effectively. Summarizing,
Lemma 1. The CQA problem for 4LQSR-formulae is decidable. ut

The following theorem states that also the CQA problem for DL4,×
D is decid-

able.

Theorem 1. Given a DL4,×
D -knowledge base KB and a DL4,×

D -conjunctive query
Q, the CQA problem for Q w.r.t. KB is decidable.

Proof (sketch). For space reasons we just outline the main ideas of the proof.
The interested reader, however, can find complete details in the extended version
of this paper (see [3]).

As remarked above, the CQA problem for DL4,×
D can be solved via an effective

reduction to the CQA problem for 4LQSR-formulae, and then exploiting Lemma 1.
The reduction is accomplished through a function θ that maps effectively variables
in V and individuals in Ind into variables of sort 0 (of the 4LQSR-language),
etc., DL4,×

D -TBoxes, -RBoxes, and -ABoxes, and DL4,×
D -conjunctive queries into

4LQSR-formulae in conjunctive normal form (CNF), which can be used to map
effectively CQA problems from the DL4,×

D -context into the 4LQSR-context. More
specifically, given a DL4,×

D -knowledge base KB and a DL4,×
D -conjunctive query Q,

using the function θ we can effectively construct the following 4LQSR-formulae
in CNF:

φKB :=
∧
H∈KB θ(H) ∧

∧12
i=1 ξi, ψQ := θ(Q) .2

Then, if we denote by Σ the answer set of Q w.r.t. KB and by Σ′ the answer
set of ψQ w.r.t. φKB, we have that Σ consists of all substitutions σ (involving
exactly the variables occurring in Q) such that θ(σ) ∈ Σ′. Since, by Lemma 1,
Σ′ can be computed effectively, then Σ can be computed effectively too. ut

4 A tableau-based procedure

In this section, we illustrate a KE-tableau based procedure that, given a 4LQSR-
formula φKB corresponding to a DL4,×

D -knowledge base and a 4LQSR-formula
2 The definition of the function θ is inspired to that of the function τ introduced in the
proof of Theorem 1 in [7]. Specifically, θ differs from τ as (i) it allows quantification
only on variables of level 0, (ii) it treats Boolean operations on concrete roles and
the product of concepts, and (iii) it constructs 4LQSR-formulae in CNF. In addition,
the constraints ξ1–ξ12 are similar to the constraints ψ1–ψ12 introduced in the proof
of Theorem 1 in [7]; they are introduced to guarantee that each model of φKB can
be transformed into a DL4,×

D -interpretation. Details of the construction of θ and of
ξ1–ξ12 can be found in [3].
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ψQ corresponding to a DL4,×
D -conjunctive query Q, yields all the substitutions

σ = {x1/y1, . . . , xn/yn}, with {x1, . . . , xn} = Var0(ψQ) and {y1, . . . , yn} ⊆
Var0(φKB), belonging to the answer set Σ′ of ψQ w.r.t. φKB.

Let φKB be the formula obtained from φKB by:
- moving universal quantifiers in φKB as inwards as possible according to the
rule (∀z)(A(z) ∧B(z))←→ ((∀z)A(z) ∧ (∀z)B(z)),

- renaming universally quantified variables so as to make them pairwise dis-
tinct.
Let F1, . . . , Fk be the conjuncts of φKB that are 4LQSR-quantifier-free atomic

formulae and S1, . . . , Sm the conjuncts of φKB that are 4LQSR-purely universal
formulae. For every Si = (∀zi1) . . . (∀zini)χi, i = 1, . . . ,m, we put

Exp(Si) :=
∧

{xa1 ,...,xani
}⊆Var0(φKB)

Si{zi1/xa1 , . . . , z
i
ni/xani}.

Let ΦKB := {Fj : i = 1, . . . , k} ∪
m⋃
i=1
Exp(Si).

To prepare for the KE-tableau based procedure to be described next, we
introduce some useful notions and notations (see [10] for a detailed overview of
KE-tableau, an optimized variant of semantic tableaux).

Let Φ = {C1, . . . , Cp} be a collection of disjunctions of 4LQSR-quantifier-free
atomic formulae of level 0 of the types: x = y, x ∈ X1, 〈x, y〉 ∈ X3. T is a
KE-tableau for Φ if there exists a finite sequence T1, . . . , Tt such that (i) T1 is
a one-branch tree consisting of the sequence C1, . . . , Cp, (ii) Tt = T , and (iii)
for each i < t, Ti+1 is obtained from Ti by an application of one of the rules in
Fig 1. The set of formulae Sβi = {β1, . . . , βn} \ {βi} occurring as premise in the
E-rule contains the complements of all the components of the formula β with
the exception of the component βi.

β1 ∨ . . . ∨ βn Sβi
βi

E-Rule

where Sβ
i

:= {β1, ..., βn} \ {βi},
for i = 1, ..., n

A | A
PB-Rule

with A a literal

Fig. 1. Expansion rules for the KE-tableau.

Let T be a KE-tableau. A branch ϑ of T is closed if it contains both A and
¬A, for some formula A. Otherwise, the branch is open. A formula β1∨ . . .∨βn is
fulfilled in a branch ϑ, if βi is in ϑ, for some i = 1, . . . , n. A branch ϑ is complete
if every formula β1 ∨ . . .∨βn occurring in ϑ is fulfilled. A KE-tableau is complete
if all its branches are complete.

Next we introduce the procedure Saturate-KB that takes as input the set
ΦKB constructed from a 4LQSR-formula φKB representing a DL4,×

D -knowledge
base KB as shown above, and yields a complete KE-tableau TKB for ΦKB.
Procedure 1 Saturate-KB(ΦKB)
1. TKB := ΦKB;
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2. Select an open branch ϑ of TKB that is not yet complete.
(a) Select a formula β1 ∨ . . . ∨ βn on ϑ that is not fulfilled.
(b) If Sβj is in ϑ, for some j ∈ {1, . . . , n}, apply the E-Rule to β1 ∨ . . . ∨ βn and

Sβj on ϑ and go to step 2.

(c) If Sβj is not in ϑ, for every j = 1, . . . , n, let Bβ be the collection of formulae
β1, . . . , βn present in ϑ and let βh be the lowest index formula such that βh ∈
{{β1, . . . , βn} \Bβ}, then apply the PB-rule to βh on ϑ, and go to step 2.

3. Return TKB.

Soundness of Procedure 1 can be easily proved in a standard way and its com-
pleteness can be shown much along the lines of Proposition 36 in [10]. Concerning
termination of Procedure 1, our proof is based on the following two facts. The
rules in Fig. 1 are applied only to non-fulfilled formulae on open branches and
tend to reduce the number of non-fulfilled formulae occurring on the considered
branch. In particular, when the E-Rule is applied on a branch ϑ, the number of
non-fulfilled formulae on ϑ decreases. In case of application of the PB-Rule on
a formula β = β1 ∨ . . . ∨ βn on a branch, the rule generates two branches. In
one of them the number of non-fulfilled formulae decreases (because β becomes
fulfilled). In the other one the number of non-fulfilled formulae stays constant
but the subset Bβ of {β1, . . . , βn} occurring on the branch gains a new element.
Once |Bβ | gets equal to n − 1, namely after at most n − 1 applications of the
PB-rule, the E-rule is applied and the formula β = β1∨ . . .∨βn becomes fulfilled,
thus decrementing the number of non-fulfilled formulae on the branch. Since the
number of non-fulfilled formulae on each open branch gets equal to zero after a
finite number of steps and the rules of Fig. 1 can be applied only to non-fulfilled
formulae on open branches, the procedure terminates.

By the completeness of Procedure 1, each open branch ϑ of TKB induces a
4LQSR-interpretation Mϑ such that Mϑ |= ΦKB. We define Mϑ = (Dϑ,Mϑ)
as follows. We put Dϑ := {x ∈ V0 : x occurs in ϑ}; Mϑx := x, for every x ∈ Dϑ;
MϑX

1
C = {x : x ∈ X1

C is in ϑ}, for every X1
C ∈ V1 occurring ϑ; MϑX

3
R = {〈x, y〉 :

〈x, y〉 ∈ X3
R is in ϑ}, for every X3

R ∈ V3 occurring in ϑ. It is easy to check that
Mϑ |= φKB and thus, plainly, that Mϑ |= φKB.

Next, we provide some complexity results. Let r be the maximum number
of universal quantifiers in Si, and k := |Var0(φKB)|. Then, each Si generates kr
expansions. Since the knowledge base contains m such formulae, the number of
disjunctions in the initial branch of the KE-tableau is m · kr. Next, let ` be the
maximum number of literals in Si, for i = 1, . . . ,m. Then, the maximum depth
of the KE-tableau, namely the maximum size of the models of ΦKB constructed
as illustrated above, is O(`mkr) and the number of leaves of the tableau, that is
the number of such models of ΦKB, is O(2`mkr ).

We now describe a procedure that, given a KE-tableau constructed by Proce-
dure 1 and a 4LQSR-formula ψQ representing a DL4,×

D -conjunctive query Q, yields
all the substitutions σ′ in the answer set Σ′ of ψQ w.r.t. φKB. By the soundness
of Procedure 1, we can limit ourselves to consider only the models Mϑ of φKB
induced by each open branch ϑ of TKB. For every open and complete branch ϑ
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of TKB, we construct a decision tree Dϑ such that every maximal branch of Dϑ
defines a substitution σ′ such that Mϑ |= ψQσ

′.
Let d be the number of literals in ψQ. Dϑ is a finite labelled tree of depth

d+ 1 whose labelling satisfies the following conditions, for i = 0, . . . , d: (i) every
node of Dϑ at level i is labelled with (σi, ψQσi), and, in particular, the root is
labelled with (σ′0, ψQσ′0), where σ′0 is the empty substitution; (ii) if a node at
level i is labelled with (σ′i, ψQσ′i), then its s-successors, with s > 0, are labelled
with

(
σ′i%

qi+1
1 , ψQ(σ′i%

qi+1
1 )

)
, . . . ,

(
σ′i%

qi+1
s , ψQ(σ′i%qi+1

s )
)
, where qi+1 is the (i +

1)-st conjunct of ψQσ′i and Sqi+1 = {%qi+1
1 , . . . , %qi+1

s } is the collection of the
substitutions % = {x1/y1, . . . , xj/yj} with {x1, . . . , xj} = Var0(qi+1) such that
p = qi+1%, for some literal p on ϑ. If s = 0, the node labelled with (σ′i, ψQσ′i) is
a leaf node and, if i = d, σ′i is added to Σ′.

Let δ(TKB) and λ(TKB) be, respectively, the maximum depth of TKB and
the number of leaves of TKB computed above. Plainly, δ(TKB) = O(`mkr) and
λ(TKB) = O(2`mkr). It is easy to verify that s = 2k is the maximum branching
of Dϑ. Since Dϑ is a s-ary tree of depth d+ 1, where d is the number of literals
in ψQ, and the s-successors of a node are computed in O(δ(TKB)) time, the
number of leaves in Dϑ is O(s(d+1)) = O(2k(d+1)) and they are computed in
O(2k(d+1)δ(TKB)) time. Finally, since we have λ(TKB) of such decision trees,
the answer set of ψQ w.r.t. φKB is computed in O(2k(d+1)δ(TKB)λ(TKB)) =
O(2k(d+1) · `mkr · 2`mkr) = O(`mkr2k(d+1)+`mkr) time. Since the size of φKB
and of ψQ are polynomially related to those of KB and of Q, respectively (see [3]
for details), the construction of the answer set of Q with respect to KB can
be done in double-exponential time. In case KB contains no role chain axioms
and qualified cardinality restrictions, the complexity of our CQA problem is in
EXPTIME, since the maximum number of universal quantifiers in φKB, namely
r, is a constant (in particular r = 3). We remark that such result is comparable
with the complexity of the CQA problem for a large family of description logics
such as SHIQ [15]. In particular, the CQA problem for the very expressive
description logic SROIQ turns out to be 2-NEXPTIME-complete.

5 Conclusions

We have introduced the description logic DL〈4LQSR,×〉(D) (DL4,×
D , for short) that

extends the logic DL〈4LQSR〉(D) with Boolean operations on concrete roles and
with the product of concepts. We addressed the problem of Conjunctive Query
Answering for the description logic DL4,×

D by formalizing DL4,×
D -knowledge bases

and DL4,×
D -conjunctive queries in terms of formulae of 4LQSR. Such formalization

seems to be promising for implementation purposes.
In our approach, we first constructed a KE-tableau TKB for φKB, a 4LQSR-

formalization of a given DL4,×
D -knowledge base KB, whose branches induce the

models of φKB. Then we computed the answer set of a 4LQSR-formula ψQ, repre-
senting a DL4,×

D -conjunctive query Q, with respect to φKB by means of a forest
of decision trees based on the branches of TKB and gave some complexity results.
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We plan to generalize our procedure with a data-type checker in order to
extend reasoning with data-types, and also to extend 4LQSR with data-type
groups. We also intend to improve the efficiency of the knowledge base saturation
algorithm and query answering algorithm, and to extend the expressiveness of the
queries. Finally, we intend to study a parallel model of the procedure described
and to provide an implementation of it.
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Abstract. We present a variant with no control states of the Turing
machine model of computation in which, at each computation step, the
operation to be performed next is determined by the symbol currently
scanned and by a bounded-length suffix of the sequence of the opera-
tions already executed on the tape. We show that our variant is Turing
complete, i.e., it can simulate any (standard) Turing machine. (In fact,
we shall provide a strong simulation which replicates the same tape con-
figurations assumed by the simulated Turing machine, without using
any additional tape symbol.) As a consequence, we argue that in order
to perform general computation tasks, Turing machines do not need to
memorize in their control states events arbitrarily far back in the past.

Keywords: Stateless Turing machines, Turing completeness, bounded
temporal memory.

1 Introduction

The notion of control states of a Turing machine (TM) is strictly related to that
of temporal memory, i.e., the ability to remember events occurred in the past.1
In fact, TMs can remember actions performed in the past (i.e., the operations
executed on the tape and/or the symbols read off from it) by encoding the
information related to such actions within their control states. Since TMs have
only finitely many control states, for each TM there is a fixed bound on the
amount of information that can be encoded within control states, and hence a
bound on the number of past actions that it can remember. However, despite this
quantitative limitation, there is conceptually no limit on how “old” the actions

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 36–48
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720
1 In this paper, by a Turing machine we mean a deterministic two-way single-tape
Turing machine with the instructions represented by quadruples, as described in [2].
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remembered by control states can be, i.e., remembered actions can be arbitrarily
old. To clarify this point, consider for instance the case of a TM that recognizes
the strings η, over a 2-symbol alphabet {a, b}, whose leftmost and rightmost
symbols are different. When the machine reads the rightmost symbol of η, it
needs only to remember which was the leftmost symbol. Thus, only two control
states suffice for this purpose: one to remember that the leftmost symbol of η
was ‘a’ and one to remember that it was, instead, ‘b’. Notice, however, that the
number of actions that the machine can perform between the reading of the
leftmost and of the rightmost symbols of η can be arbitrarily large, depending
on the length of η, and therefore, when the TM reads the rightmost symbol of η,
the previous reading of the leftmost symbol turns out to be arbitrarily old.

The capability to remember subsequences of arbitrarily old actions is a pecu-
liarity of TMs and, more generally, of any other device which uses control states
(e.g., finite automata). The main aim of this paper is to investigate to what extent
this property of TMs is demanded for performing general computations. To this
end, we introduce a stateless variant of TMs (namely, with no control states or,
equivalently, with only one control state), named Stateless Bounded Temporal
Memory Turing Machines (SBTMs).2 From a purely mechanical point of view,
SBTMs behave identically to standard TMs. However, at each computation step,
the operation to be performed next on the tape by the scanning head of a SBTM
(i.e., printing a symbol onto the scanned cell, or moving to the right or to the left
of the current position) is determined by a suffix of the sequence of the operations
already executed (including the symbols read by the head after these operations
and, therefore, also the symbol currently scanned),3 whose length cannot exceed
a bound depending solely on the particular machine.

We shall prove that SBTMs are Turing complete, i.e., they can simulate any
standard TM. In fact, we shall see that for each TM M one can construct a
SBTM V which faithfully simulates M, in the sense that (i) V does not use any
additional symbol other than those used by M, (ii) on any input η, V halts if
and only if so does M, and (iii) when, on input η, V and M halt, they reach
the same tape configuration, while scanning the same cell. As a consequence, we
shall also show that the above mentioned ability of TMs to remember within
their control states subsequences of arbitrarily old actions is not strictly required
for performing general computation tasks (see Section 3.1 for a more precise
statement of this fact). The latter property entails in particular a bound on the
amount of sequential data items needed to be memorized during computations,
which is a relevant topic, e.g., in the field of Streaming Algorithms [5].

Some Turing complete variants of stateless TMs have already been proposed
in the literature; however, these act quite differently from ours. This is the case,
for instance, for the stateless TM studied in [1], named JTM. The head of a JTM

2 Notice that restricting to one the number of control states in TMs results in a
decreased computational power (see [6]).

3 In fact, since SBTMs are devoid of the additional component of the set of control
states, the only way for these devices to be aware if something happened in the past,
is to trace back their own computations.
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spans a window of three consecutive tape cells and can thus read/write blocks of
three symbols in a single move. However, motion to the left/right of the current
head position can occur only by one cell at a time. It turns out that JTMs are
Turing complete. Stateless variants of several computational devices other than
TMs have also been investigated in the literature, mainly stateless automata such
as stateless restarting automata [3], stateless multihead automata [4], stateless
pushdown automata [7], etc. However, these devices, even in their original form,
have lower computational power than TMs.

The paper is organized as follows. Below we briefly review some notations and
terminology which will be used in the rest of the paper. Then, in Section 2, we
provide the definition of SBTMs and their semantics. Subsequently, in Section 3,
we prove the Turing completeness of SBTMs, based on a simple encoding of the
states of a TM, and also discuss other similar encodings. Then, in Section 3.1, we
introduce a class of TMs with bounded temporal memory and prove its Turing
completeness (based on the Turing completeness of SBTMs), thereby showing
the independence of the computational power of TMs from the property of
remembering subsequences of arbitrarily old actions within their control states.
Finally, we draw our conclusions in Section 4.

Basic notations and definitions. Both in the case of TMs and SBTMs,
we shall assume that tape symbols are drawn from the set of symbols S :=
{s0, s1, s2, . . .}, where s0 is the blank. Often we shall write s0 as �. Additionally,
we shall use the symbols in the set A := {x,y,�} to denote certain active
operations (as will be specified in the next section).

Throughout the paper, by a string we shall always mean a finite sequence of
symbols belonging to the set S ∪A . In particular, for every B ⊆ S ∪A , the
set of all strings whose symbols belong to B will be denoted by B∗. We shall
write ε for the empty string and |α| for the length of the string α. Notice that we
do not distinguish between a symbol and the string of length 1 consisting only
of that symbol. The concatenation of two strings α and β is denoted by α .β or,
more simply, by αβ. For every string α and each n > 0, αn denotes the string of
length n|α| consisting of the concatenation of n copies of α; thus, in particular,
we put α0 := ε. A string α is a suffix (resp., prefix) of a string β, and in such a
case we write α w β (resp., α v β), if β = γα (resp., β = αγ), for some string γ;
α is a factor of β, if β = λαρ, for some strings λ and ρ.

Given a nonempty string α, we denote with Head(α) (resp., Last(α)) the
leftmost (resp., rightmost) symbol of α, and denote with Init(α) (resp., Tail(α))
the string of length |α| − 1 obtained by deleting the rightmost (resp., leftmost)
symbol of α; we also put Head(ε) := Last(ε) := � and Init(ε) := Tail(ε) := ε.

2 SBTMs and their semantics

Informal description. A SBTM is equipped with the very same hardware
components as a TM (see [2]), namely, a linear tape, infinite in both directions,
divided into cells, with a head that at any given instant of time is positioned
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over a particular cell (the scanned cell), and a finite control box that determines
the operations that the head performs on the tape. As for TMs, such operations
are of the following four types: (a) reading the symbol in the scanned cell, (b)
printing a symbol onto the scanned cell, (c) moving to the left by one cell, and
(d) moving to the right by one cell. However, only the operations of type (b), (c),
and (d)–the active operations–are actually determined by the control box, since
the read operation takes place automatically after each active operation and at
the very beginning of each computation by a SBTM (see next).

Before a SBTM begins its computation with a string η as input, the symbols
of η are placed (from left to right) in consecutive cells of the tape (the input cells),
one symbol per cell, whereas the remaining cells of the tape are left “empty”, i.e.,
they contain a special blank symbol; the head is positioned over (i.e., scans) the
initial cell, namely, the cell immediately to the left of the input cell containing
the first (i.e., leftmost) symbol of η. This is the initial configuration for a SBTM
with input η. Then, starting from an initial configuration, SBTMs execute their
computation steps at discrete instants of time, beginning at time i = 0. Each
computation step, but the initial one, consists of the execution of an active
operation, of one of the types (b), (c), or (d), immediately followed by a read
operation from the cell being scanned by the head. In particular, for i > 0, the
active operation O performed at Stepi is determined by the control box of the
SBTM as a function of a suffix S of the sequence of the computation steps executed
up to Stepi−1 (included). In this case, we say that the SBTM has executed the
computation rule (or c-rule) S _ O. Concerning Step0, it is also convenient
to regard it as consisting of the execution of an active operation followed by a
read operation, as the remaining steps. Thus, we think of Step0 as consisting of
the initial activation of the SBTM-control box–the zero operation–immediately
followed by a read operation (of the blank symbol contained in the initial cell).
After executing a computation step, a SBTM proceeds to the next step, and so
on, until it possibly halts; this happens when none of the c-rules S _ O of the
SBTM can be executed, for any suffix S of the sequence of computation steps
executed up to then. Any finite sequence of consecutively executed computation
steps constitutes a (computation) trace of the SBTM, whereas a complete trace
is a trace starting at the initial computation Step0. The computation history of
a SBTM V is the whole sequence of configurations assumed by the tape of V
(namely, tape inscriptions along with head position) during the execution of the
computation steps of V.

From the above description, it emerges that a SBTM is essentially a (finite)
collection of c-rules. In particular, a deterministic SBTM is a suffix-free collection
of c-rules, namely a collection of c-rules containing no two distinct c-rules S ′ _ O′

and S ′′ _ O′′ such that S ′ is a suffix of S ′′.4 (Thus, intuitively, at any given
computation step, the active operation O that the head of a deterministic SBTM
can perform, if any, is uniquely determined by the previous computation steps.)

4 In this paper we are interested only in deterministic SBTMs.
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Formal definition. To formally define SBTMs, we need a convenient represen-
tation of c-rules and their components (i.e., traces and active operations). If we
represent the zero operation with the symbol �, the left and right head motions
with the symbols x and y, respectively, and, for x ∈ S , we represent the op-
eration of printing x onto the scanned cell with the very same symbol x, then
every trace T can be handily represented as a string (in the alphabet S ∪A )
as follows. First of all, we designate each computation step S by a 2-symbol
string ox, where o ∈ S ∪ A is the symbol denoting the active operation O
performed by S (as explained earlier) and x is the symbol subsequently read
from the tape by step S, immediately after the execution of O. Then a trace T
can be represented with the string resulting from concatenating the 2-symbol
strings representing the computation steps in T , in the same order in which they
occur in it. For instance, let T consist of the two computation steps S1 and S2,
where: (i) S1 consists of moving the head one cell to the right and then reading
the symbol � from the tape; and (ii) S2 consists of printing s1 onto the scanned
cell and then reading the same symbol s1. Then, T is represented by the string
y�s1s1. Observe also that any complete trace of a SBTM, i.e., a trace starting at
the initial Step0, is represented by a string with prefix ��. Finally, we represent
a c-rule S _ O as the ordered pair (σ,o), where σ is the string representing the
trace S (as described above), and o is the symbol denoting the active operation
O.

At this point, a SBTM could be formally defined simply as the set of the
ordered pairs (σ,o) representing its c-rules S _ O. However, such an approach
would require particular care to avoid circularity, since the notion of traces of
SBTMs is defined in terms of the very same notion of c-rules which we want to
define. For the sake of minimality, we shall circumvent this circularity problem by
simply admitting, among the ordered pairs representing ‘genuine’ c-rules, even
those pairs (σ,o) in which the string σ could possibly represent no valid trace.
Thus we give the following definitions.

Definition 1. A c-rule is an ordered pair (σ,o), also written as σ _ o, where
σ is any string in the alphabet S ∪A and o ∈ S ∪ {x,y}. A set of c-rules is
suffix-free, if it contains no two distinct c-rules σ′ _ o′ and σ′′ _ o′′ such that
σ′ w σ′′.

Definition 2. A (deterministic) SBTM is any finite, suffix-free set of c-rules.
The alphabet of a SBTM V is the set SV of all the tape symbols, but the blank
�, occurring in any of its c-rules.

2.1 Formal semantics of SBTMs

Let V be a SBTM. Suppose that V is ran with some given input string η ∈ (SV)∗.
For any time instant i > 0, we denote with T V

i (η) the (string representing
the) complete trace of V from Step0 up to Stepi, and with CVi (η) the tape
configuration reached at the end of Stepi. Letting C be the cell scanned by the
head at the end of Stepi, we represent CVi (η) as the triple (λ, s, ρ) in which:
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(a)λisthestringconsistingofthesymbolscontained,attheendofStepi,in
the(possiblyempty)portionofthetapetotheleftofCfromtheleftmostcell
thathasbeenscannedinanyofthecomputationstepsuptoStepi;(b)sisthe
symbolcontainedinCattheendofStepi;and(c)ρisthestringconsistingof
thesymbolscontained,attheendofStepi,inthe(possiblyempty)portionof
thetapetotherightofCuptotherightmostcellthateitherhasbeenscanned
inanyofthecomputationstepsuptoStepiorisaninputcell.
Wesaythatatrace TVi(η)isterminal(relativetoV),ifthereisnoc-rule

σ oinVsuchthatσisasuffixofTVi(η).
TheformaldefinitionsofCVi(η)andT

V
i(η),fori 0,areprovidedrecursively

asfollows.Initially,fori=0,weput

CV0(η):=(ε, ,η) and TV0(η):= .

Fori>0,letCVi−1(η):=(λ,s,ρ).Then,ifT
V
i−1(η)isterminal,weputC

V
i(η):=

CVi−1(η)andT
V
i(η):=T

V
i−1(η).Otherwise,letσ obethec-ruleofVsuch

thatσisasuffixofTVi−1(η).
5Thenweputrecursively:

CVi(η)/T
V
i(η):=






(λ,o,ρ)/TVi−1(η)oo, ifo∈S

(Init(λ),Last(λ),s.ρ)/TVi−1(η) Last(λ), ifo=

(λ.s,Head(ρ),Tail(ρ))/TVi−1(η) Head(ρ), ifo= .

ThesequenceCV0(η),C
V
1(η),C

V
2(η),...isthecomputationhistoryofVwithinput

η. WesaythatVwithinputηhalts,andproduceasoutputastringω∈(SV)
∗

(andwriteV(η)↓ω),if,forsomei 0,wehavethatTVi(η)isterminalandωis
thestringobtainedfromλsρbydeletingalloccurrencesofthesymbol ,where
(λ,s,ρ):=CVi(η).

AsinthecaseofTMs,SBTMscanbeusedinthreedifferentmodalities:(a)to
computepartialfunctions,(b)asstringgenerators,and(c)aslanguageacceptors.
Specifically,givenaSBTMV,wesaythat:

(a)Vcomputesa(partial)stringfunctionfover(SV)
∗,if,forallη,ω∈(SV)

∗,

V(η)↓ω iffω=f(η).

(b)Vgeneratesastringω∈(SV)
∗,ifV(ε)↓ω.

Finally,inordertouseSBTMsaslanguageacceptors,wemustfirstdefine
whatwemeanforaSBTMtoaccept/rejectitsinput.SinceSBTMshaveno
controlstates,apossibilitycouldbethefollowingone. Weextendthedefinition
ofaSBTMbyincludingtwonewdistinguishedsymbols,saythesymbolsy(for
“Yes”)andn(for“No”),suchthatfornoc-ruleσ ointheSBTMitisthe
casethatyornoccursinσ(butpossiblywecanhavethato=yoro=n).6

Thenwesaythat

5Observethat,accordingtoDefinition2thereisinfactexactlyonesuchc-ruleσ o.
6Thus,iftheSBTMprintsyornthenithalts.
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(c) a SBTM V accepts (resp., rejects) an input string η ∈ (SV \ {y,n})∗, if there
is a time instant i > 0 such that Last(T V

i (η)) = y (resp., Last(T V
i (η)) = n).

Example 1. Let us consider the SBTM V, consisting of the following c-rules

(1) �� _y (2) ��y� _ n (3) ��ys_ s (4) ssyt_ s

(5) ystt_y (6) yussy� _ y (7) ysssy� _ n,

where s, t, u ∈ {s1, s2}, with s 6= u. Then V accepts exactly the nonempty strings
in {s1, s2}∗ whose leftmost and rightmost symbols are different, while rejecting
all remaining strings in {s1, s2}∗. The SBTM V behaves as follows. Starting with
an input string η on its tape, V initially moves one cell to the right (cf. c-rule
(1)) and checks whether the newly scanned cell C is empty; if C is empty (which
means that η is the empty string), then V prints the symbol n onto C (cf. c-rule
(2)) and halts, thus rejecting η; otherwise, if C contains a symbol s ∈ {s1, s2},
then V prints back s onto C (cf. c-rule (3)). Then, each time V scans a nonempty
cell D, i.e., a cell containing a symbol t ∈ {s1, s2}, it checks which of the following
two conditions holds, namely: (i) the cell D has just been reached after a right
head motion preceded by a printing action of a symbol s ∈ {s1, s2}; (ii) the cell
D has just been involved in a printing action preceded by a right head motion.
In case (i), V prints the symbol s over D (cf. c-rule (4)), otherwise, in case (ii),
V moves one cell to the right of D (cf. c-rule (5)). Finally, when an empty cell
E is encountered (following a right head motion), it is checked whether the two
symbols s and u previously read from the two adjacent cells to the left of E are
different. If this is the case, V prints the symbol y onto E (cf. c-rule (6)) and
halts, thus accepting η; otherwise, if s and u are equal, V prints the symbol n (cf.
c-rule (7)) and halts, thus rejecting η. Observe that, during the computation, the
symbols of the input string η, but the leftmost one, are in turn replaced by the
leftmost symbol of η; hence, at any step, the leftmost symbol of η is remembered
by the last printed symbol. ut

3 Turing completeness of SBTMs

We prove the Turing completeness of SBTMs by constructing for every TM M a
SBTM 〈M〉 such that M and 〈M〉 are equivalent in the following strong sense,
namely, for each input string η: (a) M halts iff 〈M〉 halts; and (b) when M and
〈M〉 halt, they do with the same tape configuration, i.e., with the same tape
content and the same head position.7 (In fact, we shall see informally that the
computations of M and 〈M〉 are synchronized in an even stronger way.)

To begin with, let us review some useful notations and concepts pertaining to
TMs. We assume that the control states that any TM M can assume belong to the
set Q = {q0, q1, q2, . . .}, where q0 is bound to denote the initial state ofM. Turing
machine’s instructions are represented as quadruples of the form (q, x,o, p), where
7 In Section 3.1 we will see, as well, how to construct, for each SBTM V, an equivalent

TM 〈|V|〉 which simulates V.
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q, p ∈ Q, x ∈ S , and o ∈ S ∪ {x,y}, whose meaning is that when a TM is
in state q while reading the symbol x, the head performs the active operation
represented by o, and then the TM enters state p (see [2]). A (deterministic)
TM is then formally defined as a finite set of quadruples of the above type, no
two of which begin with the same state-symbol pair (q, x), and such that at least
one quadruple begins with q0. For every TM M := {(qi, xi,oi, pi) : 0 6 i 6 n},
where n > 0, we put:

QM := {qi, pi : 0 6 i 6 n} and SM := {�}∪({xi,oi : 0 6 i 6 n}\{x,y}) .

Thus, QM and SM are the set of states and the tape alphabet of M, respectively.
We say that a TM M activates a state-symbol pair (q, x) ∈ QM ×SM when M
reads the symbol x from the tape while in state q.8

Let M be a given TM and SM its tape alphabet. Also, let m be the smallest
positive index such that SM ⊆ {s0, s1, . . . , sm}. For simplicity, we shall write sm
as s (hence, s 6= �). In addition, for x ∈ S , let the 2-symbol string xx be denoted
by LxM.9 The SBTM 〈M〉 intended to simulate the TM M will encode each state
qi of M with the trace LsML�Mi+2LsM, consisting of a sequence of (i+ 4) printing
steps which uniquely characterizes qi. The simulation proceeds in such a way
that when M activates the state-symbol pair (qi, x), (i) the string LsML�Mi+2LsMLxM
turns out to be a suffix of the current complete trace of 〈M〉 and, additionally,
(ii) M and 〈M〉 have the same tape configuration.

The first state-symbol pair activated by M is (q0,�). Thus we put into 〈M〉
the following block S0 of c-rules:

�� _ s, ��LsM _ �, ��LsML�M _ �, ��LsML�M2 _ s, ��LsML�M2LsM _ � .

The c-rules in S0 have the effect to generate the complete trace ��LsML�M2LsML�M
(while leaving the tape as in its initial configuration), whose suffix LsML�M2LsML�M
correctly encodes the activation of the pair (q0,�). Notice that the block S0 is
independent of the specific TM M.

Next, for each instruction I := (qi, x,o, qj) in M we define a corresponding
simulating block 〈I〉 of c-rules for 〈M〉. We distinguish the following cases:

Case o = y, with y ∈ S : In this case 〈I〉 consists of the following c-rules:

LsML�Mi+2LsMLxM _ s , LsML�Mi+2LsMLxMLsML�Mk _ � , for 0 6 k 6 j + 1

LsML�Mi+2LsMLxMLsML�Mj+2 _ s , LsML�Mi+2LsMLxMLsML�Mj+2LsM _ y .

[Comment: Assuming recursively that the current complete trace T of the simu-
lating computation of 〈M〉 has the suffix LsML�Mi+2LsMLxM (corresponding to the
8 Note that, since a TM initially scans the blank preceding the leftmost symbol of its
input string (see [2]), the pair (q0,�) is always activated by every TM at the very
beginning of each of its computations.

9 Thus, LxM represents the computation step consisting of printing the symbol x and
then reading the same symbol x (just printed) from the tape.
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activation of the pair (qi, x)), on a tape configuration C in which the head scans a
cell C with the symbol x, the above block of c-rules has the effect of: (i) append-
ing the new suffix LsML�Mj+2LsMLyM to T ; and (ii) returning a tape configuration
C′ in which the head scans the cell C, now containing the symbol y, and that
otherwise is identical to C. Notice that the suffix LsML�Mj+2LsMLyM encodes the
pair state-symbol (qj , y), which is the next pair to be activated by M.]

Case o ∈ {x,y}: In this case 〈I〉 consists of the c-rule LsML�Mi+2LsMLxM _ o,
plus the blocks 〈I〉z, for each z ∈ SM, consisting of the following c-rules:

LsML�Mi+2LsMLxMoz _ s , LsML�Mi+2LsMLxMozLsML�Mk _ � , for 0 6 k 6 j + 1

LsML�Mi+2LsMLxMozLsML�Mj+2 _ s , LsML�Mi+2LsMLxMozLsML�Mj+2LsM _ z .

[Comment: For z ∈ SM, let us put 〈I〉+
z := 〈I〉z ∪

{
LsML�Mi+2LsMLxM _ o

}
. For

simplicity, let us suppose that o = x (we can reason similarly in the case in
which o = y). Assuming recursively that the current complete trace T of the
simulating computation of 〈M〉 has the suffix LsML�Mi+2LsMLxM (corresponding to
the activation of the pair (qi, x)), on a tape configuration C in which the head
scans a cell C and the cell L on the left of C contains the tape symbol z ∈ SM,
the subblock 〈I〉+

z of 〈I〉 has the effect of: (i) appending to T the new suffix
ozLsML�Mj+2LsMLzM; and (ii) returning a new tape configuration C′ in which the
head scans the cell L and that otherwise is identical to C. Notice that the suffix
LsML�Mj+2LsMLzM of the prolongated trace of 〈M〉 encodes the pair state-symbol
(qj , z), which is the next pair to be activated by M.]

Finally, we put:
〈M〉 := S0 ∪

⋃
I ∈M 〈I〉 ,

completing the formal definition of 〈M〉.
It can easily be verified that the set of c-rules 〈M〉 just given is suffix-tree

(and, therefore, correctly defines a SBTM according to Definition 2). Indeed,
observe that, for each c-rule σ _ o in the set

⋃
I∈M 〈I〉, the string σ starts with

a prefix π of the form LsML�Mi+2LsMLxM, for some i > 0 and x ∈ SM, such that,
for each c-rule σ′ _ o′ in

⋃
I∈M 〈I〉: (i) π is not a factor of Tail(σ′); and (ii) if

π v σ′ and |σ| = |σ′|, then σ = σ′ and o = o′. Also, observe that each c-rule
σ _ o in S0 is such that Head(σ) = �, and that � does not occur in any c-rule
in
⋃
I∈M 〈I〉. Notice also that, apart from the trivial case in which SM = {�}

(in which case we have s = s1 /∈ SM), the c-rules of 〈M〉 use only tape symbols
in the alphabet SM of M. Finally, we observe that the above comments to the
definitions of the blocks 〈I〉 of c-rules, for each instruction I ∈M, could be easily
translated into a formal proof of the fact that 〈M〉 correctly simulates M in the
strong sense described at the beginning of the section.

Complexity of various encodings. As discussed above, the main idea behind
the construction of 〈M〉 is to simulate the activation by M of each state-symbol
pair (qi, x) by means of the trace LsML�Mi+2LsMLxM of 〈M〉, where LsML�Mi+2LsM
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encodes the state qi. This approach can be generalized as follows. First of all, we
associate to each state qi ofM a suitable codeword c(qi) in the alphabet {LsM, L�M}
(in which each of the two strings LsM and L�M is temporarily regarded as a single
symbol) and then simulate the activation of any pair (qi, x) by means of the trace
c(qi) . LxM. The case c(qi) := LsML�Mi+2LsM corresponds to the approach adopted
in the proof sketched above. For each choice of the particular encoding c of the
states of M, the definitions of the sets S0 and 〈I〉, for I ∈M, provided before,
generalize straightforwardly, thus obtaining the corresponding sets of c-rules Sc

0
and 〈I〉c, for I ∈M (details are omitted for brevity). Clearly, we are interested
only in encodings c which are admissible, in the sense that the resulting set of
c-rules

〈M〉c := Sc
0 ∪

⋃
I ∈M

〈I〉c

is suffix-free. For instance, a family of admissible encodings is provided by the
functions ch, for h > 2, such that ch(qi) := LsML�Mi+hLsM. Again, for h = 2
we obtain the encoding c2 adopted in our previous proof. If we assume that
QM = {q0, q1, . . . , qk−1}, for some k > 1 (in which case we say that M is tight),
each of the encodings ch generates a SBTM 〈M〉ch whose longest c-rule has linear
length in the number k of the states of M. More in general, for each TM T and
SBTM V, let us define the sizes ‖T‖ and ‖V‖ by putting:

‖T‖ := |QT| and ‖V‖ := max{|σ| : σ _ o ∈ V, for some o ∈ S ∪{x,y}}

(where |QT| denotes the cardinality of QT). Then, using the asymptotic notation
Θ, we have that ‖〈M〉ch‖ = Θ(‖M‖), for each h > 2. This indeed follows from
the facts that (A) for each encoding c, ‖〈M〉c‖ = Θ(max({|c(q)| : q ∈ QM})),
and (B) |ch(qi)| = 2 · (2+ i+h), for h > 2. Notice, however, that more “compact”
admissible encodings c can be devised such that ‖〈M〉c‖ = Θ(log ‖M‖). Indeed,
let ζ0, ζ1, ζ2, . . . be the list in quasi-lexicographic order10 of the nonempty strings
ζ in the alphabet {LsM, L�M} such that ζ contains no two consecutive occurrences
of LsM, and consider the encoding f such that f(qi) := LsM2L�MζiL�MLsM2, for each
i > 0. By reasoning much as we did for 〈M〉, it can be shown that 〈M〉f is
suffix-free, i.e., f is admissible.11 Concerning the size of 〈M〉f , we show next that
it is logarithmic in the size of M, provided that M is tight. To begin with, it can
easily be verified that, for each n > 0, the number of strings of length n in the
alphabet {LsM, L�M} containing no two consecutive LsM’s is exactly Fn+2, where
Fn is the nth Fibonacci number.12 Exploiting the identity

∑n
j=1 Fj = Fn+2 − 1

10 Hence, the strings ζi’s are firstly ordered by their length and then lexicographically,
where w.l.o.g. we conventionally assume that L�M < LsM.

11 Note that, if we remove from f(qi) the “symbol” L�M surrounding ζi, the resulting
encoding g(qi) := LsM2ζiLsM2 turns out to be not admissible. For, consider the case
in which the TM M contains the instruction I := (q0, s, x, q3), where x ∈ S . Then,
since ζ0 = L�M and ζ3 = L�MLsM, we have g(q0) = LsM2L�MLsM2 and g(q3) = LsM2L�MLsM3,
so that the set 〈I〉g contains the c-rules LsM2L�MLsM3 _ s and LsM2L�MLsM5L�MLsM3 _ x,
plainly implying that 〈M〉g is not suffix-free.

12 Thus, F0 = 0, F1 = 1, and Fk+2 = Fk + Fk+1, for k > 0.
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(for n > 0), we have

F|ζi|+3 − 3 =
|ζi|−1∑
j=1

Fj+2 6 i <

|ζi|∑
j=1

Fj+2 = F|ζi|+4 − 3

for each i > 2. Given that Fn = Θ(φn) (in fact Fn

φn → 1√
5 ), where φ := 1+

√
5

2 ≈
1.618 is the golden ratio, the latter inequalities imply |ζi| = Θ(logφ i). Hence we
have |f(qi)| = Θ(logφ i), which yields, by (A) above and by the tightness of M,

‖〈M〉f‖ = Θ(logφ ‖M‖) ,

proving that the size of 〈M〉f is logarithmic in the size of M, when M is tight.

3.1 Standard TMs with bounded temporal memory

The intuitive considerations of Section 1 concerning the independence of the
computational power of TMs from the property of these devices to remember
subsequences of arbitrarily old actions within their control states can be made
more precise by using a notion of trace of TMs identical to that of SBTM’s trace
introduced earlier. More precisely, a trace of a TM M is a sequence of consecutive
computation steps of M, where a computation step consists in the execution of
an active operation of the scanning head on the tape (i.e., printing a symbol or
a left/right motion) followed by the subsequent reading of the symbol contained
in the newly scanned cell, as in the case of SBTMs.

Next, suppose that a TM M performs an active operation O on its tape, during
a given computation step S. Then, letting T be the complete trace ofM consisting
of the whole sequence of computation steps preceding S, it can be readily verified
that O is uniquely determined by T ; i.e., there is a function, ΥM, which maps each
complete trace T to the particular active operation O := ΥM(T ) to be performed
next. Now, let us define the class Ω of TMs with bounded temporal memory.
Specifically, the class Ω consists of all TMs M for which there is a constant `

M

(depending on M) such that the (active) operations to be performed next on the
tape can be determined only by suffixes of the complete traces of M consisting of
at most `

M
consecutive computation steps; i.e., more formally, the function ΥM

is such that ΥM(T ′) = ΥM(T ′′), for any two complete traces T ′ and T ′′ which
share a common suffix of `

M
computation steps. Intuitively, TMs in the class Ω

do not care of (or forget) actions strictly older than `
M

computation steps. Then,
the question arises whether the computational power of TMs decreases when we
restrict to the class Ω above. As will be outlined below, given any SBTM V,
an equivalent TM 〈|V|〉 can be constructed such that 〈|V|〉 ∈ Ω; therefore, since
SBTMs are Turing complete, it follows that every TM M is equivalent to some
TM T ∈ Ω (e.g., T := 〈|〈M〉|〉). Hence the answer to the above question is that
the class Ω is, in fact, Turing complete.

The basic idea of the construction of the TM 〈|V|〉, for a given SBTM V, is to
use the control states of 〈|V|〉 to store in turn the strings θ of length 2`− 1, with
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` := ‖V‖
2 , such that θ .x represents the last ` computation steps of the current

(complete) trace of 〈|V|〉, where x is the symbol currently scanned by the head of
〈|V|〉. When 〈|V|〉 assumes a state q, while reading the symbol x from the tape, the
particular operation O that 〈|V|〉 has to perform next is determined by the c-rule
σ .x_ o of V such that σ is a suffix of the string θ stored within q, i.e, O is the
operation represented by o. Formally, the construction of 〈|V|〉 goes as follows. Let
θ0, θ1, θ2, . . . be any listing of the strings in the alphabet B := SV∪{�,�,x,y},
where θ0 = �, and let Q : B∗ −→ {q0, q1, q2, . . .} be the function such that, for
each i > 0: if |θi| < 2`, thenQ(θi) = qi; otherwise, if |θi| > 2`, thenQ(θi) = Q(θi),
where θi is the suffix of θi of length 2` − 1.13 Then, we let 〈|V|〉 be the Turing
machine whose instructions are all the quadruples (Q(θ), x,o,Q(θxo)) such that
σ .x_ o ∈ V and σ w θ, where θ ∈ B∗, x ∈ SV∪{�}, and o ∈ SV∪{�,x,y}.
It can be verified that 〈|V|〉 is indeed a TM equivalent to V and that 〈|V|〉 ∈ Ω
(details are omitted for brevity).

4 Conclusions

We have presented a variant of the Turing machine model of computation with no
control states, named SBTM. In each computation step, the operation performed
by the head is determined by the symbol currently scanned and by a suffix of
bounded length of the sequence of the computation steps previously executed. We
have shown that SBTMs are Turing complete, namely they are computationally
as powerful as standard Turing machines. In addition, based on the Turing
completeness of SBTMs, we have also shown that the computational power of
TMs is independent of their ability to remember subsequences of arbitrarily old
actions within their control states.

We plan to investigate further computational properties of SBTMs and, in
particular, properties related to the following notion of string complexity which
naturally arises in this context: given a string η, the SBTM-complexity of η is
defined as the size of a minimum sized SBTM V such that: (i) the alphabet of
V consists precisely of the symbols occurring in η; and (ii) V generates η.
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Abstract. Since the late 80s, LTL and CTL model checking have been
extensively applied in various areas of computer science and AI. Even
though they proved themselves to be quite successful in many application
domains, there are some relevant temporal conditions which are inherently
“interval based” (this is the case, for instance, with telic statements like
“the astronaut must walk home in an hour” and temporal aggregations like
“the average speed of the rover cannot exceed the established threshold”)
and thus cannot be properly modelled by point-based temporal logics.
In general, to check interval properties of the behavior of a system, one
needs to collect information about states into behavior stretches, which
amounts to interpreting each finite sequence of states as an interval and
to suitably defining its labelling on the basis of the labelling of the states
that compose it.
In order to deal with these properties, a model checking framework based
on Halpern and Shoham’s interval temporal logic (HS for short) and its
fragments has been recently proposed and systematically investigated in
the literature. In this paper, we give an original proof of EXPSPACE
membership of the model checking problem for the HS fragment AABBE
(resp.,AAEBE) of Allen’s interval relationsmeets,met-by, started-by (resp.,
finished-by), starts, and finishes. The proof exploits track bisimilarity and
prefix sampling, and it turns out to be much simpler than the previously
known one. In addition, it improves some upper bounds.
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1 Introduction

Interval temporal logics (ITLs) have been proposed as an alternative setting
for reasoning about time [7, 17, 20] with respect to standard, point-based logics
such as LTL [18] and CTL [6]. ITLs take intervals, rather than points, as their
primitive entities, and their expressiveness enables them to specify, for instance,
actions with duration, accomplishments, and temporal aggregations, which are
inherently “interval-based” and cannot be expressed by point-based logics.

In this paper, we make use of ITLs as the specification language in model
checking (MC), one of the most successful techniques in the area of formal meth-
ods, which allows a user to automatically check whether some desired properties
of a system, specified by a temporal logic formula, hold over a model of it (usually
a Kripke structure). In order to verify interval properties of computations, one
needs to collect information about states into computation stretches: each finite
path in a Kripke structure is interpreted as an interval, whose labelling is defined
on the basis of the labelling of the component states. We focus our attention on
Halpern and Shoham’s modal logic of time intervals (HS) [7] which features one
modality for each of the 13 possible ordering relations between pairs of intervals
(the so-called Allen’s relations [1]), apart from equality. Its satisfiability problem
turns out to be undecidable for all relevant (classes of) linear orders [7]. The
same holds for most fragments of HS [3, 8, 12]; however, some exceptions exist,
e.g., the logic of temporal neighbourhood and the logic of sub-intervals [4, 5].

TheMC problem for HS has been considered only very recently [2, 9, 10, 11, 13,
14, 15, 16]. In [13], Molinari et al. study MC for full HS (under the homogeneity
assumption [19]). They introduce the problem and prove its non-elementary
decidability. In [2], the authors prove its EXPSPACE-hardness. Since then,
the attention was also brought to the fragments of HS, which, similarly to what
happens with satisfiability, are often computationally better. The MC problem for
epistemic extensions of some HS fragments has been investigated by Lomuscio
and Michaliszyn [9, 10, 11] (a detailed account of their results can be found
in [13]). However, their semantic assumptions differ from those of [13] (we make
the same assumptions here), thus making it difficult to compare the two research
lines.

In this paper, we study the MC problem for the HS fragment AABBE (resp.,
AAEBE), whose modalities allow one to access intervals which are met by/meet
the current one, or are prefixes (resp., suffixes) or right/left-extensions of it. In [15],
the authors show that the problem is in EXPSPACE. The MC algorithm they
describe exploits the possibility of finding, for each track of a Kripke structure,
a satisfiability-preserving track of bounded length, called a track representative.
Thus, the algorithm needs to check only tracks with a bounded maximum length.
In [14], they prove the problem to be PSPACE-hard. The proof of membership
to EXPSPACE is rather involved, and two very technical notions, namely, the
notions of scan function and configuration, are introduced in order to determine
the aforementioned bound to the length of representatives. Here, we provide a
much easier proof, which leads to another class of track representatives, with the
same purpose of those of [15], but shorter in general.
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Table 1. Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y
finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

The paper is organized as follows. In the next section, we introduce the
fundamental elements of the MC problem for HS, and we give a short account
of the known complexity results about MC for HS fragments. In Sect. 3, we
introduce the notion of bisimilarity among tracks, that is exploited in Sect. 4,
along with prefix samplings, to build, given a (generic) track ρ, a track ρ′ of
bounded length, and indistinguishable from ρ with respect to satisfiability of
AABBE formulas, having nesting depth of modality 〈B〉 up to some k ≥ 0.

2 Preliminaries

The interval temporal logic HS. An interval algebra to reason about intervals
and their relative order was proposed by Allen in [1], while a systematic logical
study of interval representation and reasoning was done a few years later by
Halpern and Shoham, who introduced the interval temporal logic HS featuring
one modality for each Allen relation, but equality [7]. Table 1 depicts 6 of the
13 Allen’s relations, together with the corresponding HS (existential) modalities.
The other 7 relations are the 6 inverse relations (given a binary relation R , the
inverse relation R is such that bR a if and only if aR b) and equality.

The language of HS consists of a set of proposition letters AP , the Boolean
connectives ¬ and ∧, and a temporal modality for each of the (non trivial) Allen’s
relations, i.e., 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉. HS
formulas are defined by the grammar ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ | 〈X〉ψ, where
p ∈ AP and X ∈ {A,L,B,E,D,O}. In the following, we will also exploit the
other usual logical connectives (disjunction ∨, implication →, and double impli-
cation↔) as abbreviations. Furthermore, for any modality X, the dual universal
modalities [X]ψ and [X]ψ are defined as ¬〈X〉¬ψ and ¬〈X〉¬ψ, respectively.

The joint nesting depth of B and E in a formula ψ, denoted by dBE(ψ),
is defined as: (i) dBE(p) = 0, for any p ∈ AP ; (ii) dBE(¬ψ) = dBE(ψ); (iii)
dBE(ψ∧φ) = max{dBE(ψ),dBE(φ)}; (iv) dBE(〈X〉ψ) = 1+dBE(ψ), when X = B
or X = E; (v) dBE(〈X〉ψ) = dBE(ψ), when both X 6= B and X 6= E. If we
consider formulas ψ of HS fragments devoid of E (resp., B), the nesting depth
of modality B (resp., E) in ψ, denoted as dB(ψ) (resp., dE(ψ)), accounts for
modality B (resp., E) only, and dB(ψ) = dBE(ψ) (resp., dE(ψ) = dBE(ψ)).

Given any subset of Allen’s relations {X1, .., Xn}, we denote by X1 · · ·Xn the
HS fragment featuring existential (and universal) modalities for X1, .., Xn only.
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W.l.o.g., we assume the non-strict semantics of HS, which admits intervals
consisting of a single point5. Under such an assumption, all HS modalities can
be expressed in terms of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [20]. HS can thus
be regarded as a multi-modal logic with these 4 primitive modalities and its
semantics can be defined over a multi-modal Kripke structure, called abstract
interval model, where intervals are treated as atomic objects and Allen’s relations
as binary relations between pairs of intervals. Since later we will focus on the HS
fragments AAEBE and AABBE—which do not feature 〈B〉 and 〈E〉 respectively—
we add both 〈A〉 and 〈A〉 to the considered set of HS modalities.

Definition 1. [13] An abstract interval model is a tuple A =(AP ,I,AI,BI,EI,σ),
where AP is a set of proposition letters, I is a possibly infinite set of atomic
objects (worlds), AI, BI, and EI are three binary relations over I, and σ : I 7→ 2AP

is a (total) labeling function, assigning a set of proposition letters to each world.

In the interval setting, I is interpreted as a set of intervals and AI, BI, and EI as
Allen’s relations A (meets), B (started-by), and E (finished-by), respectively; σ
assigns to each interval in I the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI, BI, EI, σ) and an interval
I ∈ I, the truth of an HS formula over I is inductively defined as follows:
– A, I |= p iff p ∈ σ(I), for any p ∈ AP ;
– A, I |= ¬ψ iff it is not true that A, I |= ψ (also denoted as A, I 6|= ψ);
– A, I |= ψ ∧ φ iff A, I |= ψ and A, I |= φ;
– A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. I XI J and A, J |= ψ;
– A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. J XI I and A, J |= ψ.

Kripke structures and abstract interval models. In the context of MC, finite state
systems are usually modelled as finite Kripke structures. In [13], the authors
define a mapping from Kripke structures to abstract interval models, that allows
one to specify interval properties of computations by means of HS formulas.

Definition 2. A finite Kripke structure is a tuple K = (AP ,W, δ, µ, w0), where
AP is a set of proposition letters, W is a finite set of states, δ ⊆ W ×W is a
left-total relation between pairs of states, µ : W 7→ 2AP is a total labelling function,
and w0 ∈W is the initial state.

For all w ∈W , µ(w) is the set of proposition letters that hold at w, while δ
is the transition relation that describes the evolution of the system over time.

v0
p

v1
q

Fig. 1. The Kripke structure Ka.

Fig. 1 depicts the finite Kripke structure
Ka = ({p, q}, {v0, v1}, δ, µ, v0), where δ =
{(v0, v0), (v0, v1), (v1, v0), (v1, v1)}, µ(v0) =
{p}, and µ(v1)={q}. The initial state v0 is
identified by a double circle.

Definition 3. A track ρ of a finite Kripke structure K = (AP ,W, δ, µ, w0) is a
finite sequence of states v1 · · · vn, with n ≥ 1, s.t. (vi, vi+1) ∈ δ for i ∈ [1, n− 1].
5 All the results we prove in the paper hold for the strict semantics as well.



Interval TL Model Checking Based on Bisimilarity & Prefix Sampling 53

Let TrkK be the (infinite) set of all tracks over a finite Kripke structure K . For
any track ρ = v1 · · · vn ∈ TrkK , we define:
– |ρ| = n, fst(ρ) = v1, and lst(ρ) = vn;
– any index i ∈ [1, |ρ|] is called a ρ-position and ρ(i) = vi;
– states(ρ) = {v1, · · · , vn} ⊆W ;
– ρ(i, j) = vi · · · vj , for 1 ≤ i ≤ j ≤ |ρ|, is the subtrack of ρ bounded by i, j;
– Pref(ρ) = {ρ(1, i) | 1 ≤ i ≤ |ρ| − 1} and Suff(ρ) = {ρ(i, |ρ|) | 2 ≤ i ≤ |ρ|} are

the sets of all proper prefixes and suffixes of ρ, respectively.
Given ρ, ρ′ ∈ TrkK , we denote by ρ · ρ′ the concatenation of the tracks ρ and ρ′.
Moreover, if lst(ρ) = fst(ρ′), we denote by ρ ? ρ′ the track ρ(1, |ρ| − 1) · ρ′. In
particular, when |ρ| = 1, ρ ? ρ′ = ρ′. In the following, when we write ρ ? ρ′, we
implicitly assume that lst(ρ) = fst(ρ′). Finally, if fst(ρ) = w0 (the initial state of
K ), ρ is called an initial track.

An abstract interval model (over TrkK ) can be naturally associated with a
finite Kripke structure K by considering the set of intervals as the set of tracks
of K . Since K has loops (δ is left-total), the number of tracks in TrkK , and thus
the number of intervals, is infinite.

Definition 4. The abstract interval model induced by a finite Kripke struc-
ture K = (AP ,W, δ, µ, w0) is AK = (AP , I, AI, BI, EI, σ), where I = TrkK , AI =
{(ρ, ρ′) ∈ I × I | lst(ρ) = fst(ρ′)}, BI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Pref(ρ)},
EI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Suff(ρ)}, and σ : I 7→ 2AP is such that σ(ρ) =⋂
w∈states(ρ) µ(w), for all ρ ∈ I.

Relations AI, BI, and EI are interpreted as the Allen’s relations A,B, and
E, respectively. Moreover, according to the definition of σ, p ∈ AP holds over
ρ = v1 · · · vn if and only if it holds over all the states v1, · · · , vn of ρ. This conforms
to the homogeneity principle [19], according to which a proposition letter holds
over an interval if and only if it holds over all its subintervals.

Definition 5. Let K be a finite Kripke structure and ψ be an HS formula; we
say that a track ρ ∈ TrkK satisfies ψ, denoted as K , ρ |= ψ, iff it holds that
AK , ρ |= ψ. Moreover, we say that K models ψ, denoted as K |= ψ, iff for all
initial tracks ρ′ ∈ TrkK it holds that K , ρ′ |= ψ. The model checking problem for
HS over finite Kripke structures is the problem of deciding whether K |= ψ.

In Fig. 2, we provide an example of a finite Kripke structure KSched that
models the behaviour of a scheduler serving three processes which are continuously
requesting the use of a common resource (it is a simplified version of an example
given in [13]). The initial state is v0: no process is served in that state. In any
other state vi and vi, with i ∈ {1, 2, 3}, the i-th process is served (this is denoted
by the fact that pi holds in those states). For the sake of readability, edges are
marked either by ri, for request(i), or by ui, for unlock(i). Edge labels do not
have a semantic value, that is, they are neither part of the structure definition,
nor proposition letters; they are simply used to ease reference to edges. Process
i is served in state vi, then, after “some time”, a transition ui from vi to vi is
taken; subsequently, process i cannot be served again immediately, as vi is not
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directly reachable from vi (the scheduler cannot serve the same process twice in
two successive rounds). A transition rj , with j 6= i, from vi to vj is then taken
and process j is served.

v0
∅

v2
p2

v1
p1

v3
p3

v1
p1

v2
p2

v3
p3

r1

r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Fig. 2. The Kripke structure KSched.

We now show how some meaning-
ful properties to be checked against
KSched can be expressed in HS, in
particular, by formulas of AAEBE. In
all formulas, we force the validity of
the considered property over all le-
gal computation sub-intervals by us-
ing modality [E] (all computation
sub-intervals are suffixes of at least
one initial track). The truth of the
next statements can easily be checked
(〈E〉k stands for k occurrences of
modality 〈E〉):

– KSched |= [E]
(
〈E〉3> → (χ(p1, p2) ∨ χ(p1, p3) ∨ χ(p2, p3))

)
,

where χ(p, q) := 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q;
– KSched 6|= [E](〈E〉10> → 〈E〉 〈A〉 p3);
– KSched 6|= [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3)).

The first formula states that in any suffix of length at least 4 of an initial track,
at least 2 proposition letters are witnessed. KSched satisfies the formula since a
process cannot be executed twice in a row. The second formula states that in
any suffix of length at least 11 of an initial track, process 3 is executed at least
once in some internal states (non starvation). KSched does not satisfy the formula
since the scheduler can avoid executing a process ad libitum. The third formula
states that in any suffix of length at least 6 of an initial track, p1, p2, p3 are all
witnessed. The only way to satisfy this property is to constrain the scheduler to
execute the 3 processes in a strictly periodic manner, but this is not the case.

The general picture. Now we summarize the known complexity results about the
MC problem for HS fragments (see Fig. 3 for a graphical account).

In [13], Molinari et al. show that, given a finite Kripke structure K and a
bound k on the structural complexity of HS formulas (nesting depth of 〈E〉 and
〈B〉 modalities), it is possible to obtain a finite representation for AK , which is
equivalent to AK w. r. to satisfiability of HS formulas with structural complexity
less than or equal to k. Then, by exploiting such a representation, they prove
that the MC problem for (full) HS is decidable, providing an algorithm with
non-elementary complexity. In [2], Bozzelli et al. show that the problem for
the fragment BE, and thus for full HS, is EXPSPACE-hard. In [15], Molinari
et al. study the fragments AABBE and AAEBE, devising for each of them an
EXPSPACE MC algorithm which exploits the possibility of finding, for each
track of a Kripke structure, a satisfiability-preserving track of bounded length
(track representative). In this way, the algorithm needs to check only tracks
having a bounded maximum length. In [14], they prove that the problem for
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AABE PSPACE-complete 2,3 B PSPACE-complete 4

E PSPACE-complete 4

AAEE PSPACE-complete 5AABB PSPACE-complete 5

AA PNP[O(log2 n)] 4

PNP[O(log n)]-hard 4
A PNP[O(log2 n)] 4

PNP[O(log n)]-hard 4

B coNP-complete 5

E coNP-complete 5

Prop coNP-complete 3

AABBE EXPSPACE 2

PSPACE-hard 3

succinct AABBE EXPSPACE 2

NEXP-hard 2
BE nonELEMENTARY 1

EXPSPACE-hard 5

full HS nonELEMENTARY 1

EXPSPACE-hard 5

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness
hardness

1 [13], 2 [15], 3 [14], 4 [16], 5 [2]

Fig. 3. Complexity of the MC problem for HS fragments

AABBE and AAEBE is PSPACE-hard (with a succinct encoding of formulas the
algorithm remains in EXPSPACE, but a NEXPTIME lower bound can be
given [15]). The MC problem for other HS fragments has been studied in the
following papers:
– AABE, B, E, AABB, and AAEE are PSPACE-complete [2, 14, 15, 16];
– AA, A, and A are in between PNP[O(logn)] and PNP[O(log2 n)] [16];
– B, E, Prop (the propositional fragment of HS) are co-NP-complete [2, 14].
In the next sections, we shall reconsider the MC problem for the fragment

AABBE (and the symmetric fragment AAEBE), proving in a much simpler way
(compared to [15]) its membership to EXPSPACE. We shall show that, given
a track ρ and h ≥ 0, there is a track ρ′, whose length is at most (|W | + 2)h+2,
such that for every AABBE formula ψ, with dB(ψ) ≤ h, K , ρ |= ψ iff K , ρ′ |= ψ.
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3 Track Bisimilarity

In this short section, we introduce the notions of prefix-bisimilarity and suffix-
bisimilarity between a pair of tracks ρ and ρ′ of a Kripke structure. As proved
by Proposition 2 below, prefix-bisimilarity (resp., suffix-bisimilarity) is a suffi-
cient condition for two tracks ρ and ρ′ to be indistinguishable with respect to
satisfiability of (some classes of) AABBE (resp., AAEBE) formulas, respectively.

Definition 6 (Prefix-bisimilarity and Suffix-bisimilarity). Let h ≥ 0 and
ρ and ρ′ be two tracks of a Kripke structure K . We say that ρ and ρ′ are h-prefix
bisimilar if the following conditions inductively hold:
– for h = 0: fst(ρ) = fst(ρ′), lst(ρ) = lst(ρ′), and states(ρ) = states(ρ′).
– for h > 0: ρ and ρ′ are 0-prefix bisimilar and for each proper prefix ν of
ρ (resp., proper prefix ν′ of ρ′), there exists a proper prefix ν′ of ρ′ (resp.,
proper prefix ν of ρ) such that ν and ν′ are (h− 1)-prefix bisimilar.
The notion of h-suffix bisimilarity is defined in a symmetric way by consid-

ering suffixes of tracks instead of prefixes.

Property 1. Given a Kripke structure K , for all h ≥ 0, h-prefix (resp., h-suffix)
bisimilarity is an equivalence relation over TrkK .

Moreover, h-suffix bisimilarity and h-prefix bisimilarity propagate downwards.

Property 2. Given a Kripke structure K and two tracks ρ, ρ′ ∈ TrkK , for all h > 0,
if ρ and ρ′ are h-prefix (resp., h-suffix) bisimilar, then they are also (h−1)-prefix
(resp., (h− 1)-suffix) bisimilar.

The following result can easily be proved by induction on h ≥ 0.

Proposition 1. Let h ≥ 0, and ρ and ρ′ be two h-prefix (resp., h-suffix) bisimilar
tracks of a Kripke structure K . Then, for each track ρ′′ of K ,
1. ρ′′ ? ρ and ρ′′ ? ρ′ are h-prefix (resp., h-suffix) bisimilar;
2. ρ ? ρ′′ and ρ′ ? ρ′′ are h-prefix (resp., h-suffix) bisimilar.

By Proposition 1 and a straightforward induction on the structural complexity
of formulas, we obtain that h-prefix (resp., h-suffix) bisimilarity preserves the
satisfiability of AABBE (resp., AAEBE) formulas having nesting depth of modality
B (resp., E) at most h.

Proposition 2. Let h ≥ 0, and ρ and ρ′ be two h-prefix (resp., h-suffix) bisimilar
tracks of a Kripke structure K . For each AABBE (resp., AAEBE) formula ψ with
dB(ψ) ≤ h (resp., dE(ψ) ≤ h), it holds that K , ρ |=ψ iff K , ρ′ |=ψ.

4 The Fragments AABBE and AAEBE: Exponential-Size
Model-Track Property

In this section, we focus on the fragment AABBE (the case of AAEBE is completely
symmetric). We shall show how to determine a subset of positions of a track ρ
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(a prefix sampling of ρ), starting from which it is possible to build another track
ρ′, of bounded exponential size, which is indistinguishable from ρ with respect
to the fulfilment of AABBE formulas up to a given nesting depth of modality B
(exponential-size model-track property). We start by introducing the notions of
induced track, prefix-skeleton sampling, and h-prefix sampling, and prove some
related properties.

Definition 7 (Induced track). Let ρ be a track of length n of a Kripke struc-
ture K . A track induced by ρ is a track π of K such that there exists an increasing
sequence of ρ-positions i1 < . . . < ik, with i1 = 1, ik = n, and π = ρ(i1) · · · ρ(ik).

Note that if π is induced by ρ, then fst(π) = fst(ρ), lst(π) = lst(ρ), and |π| ≤ |ρ|
(in particular, |π| = |ρ| iff π = ρ). Intuitively, a track induced by ρ is obtained
by contracting ρ, namely, by concatenating some subtracks of ρ, provided that
the resulting sequence is a track of K as well.

In the following, given a set I of natural numbers, by “two consecutive elements
of I” we refer to a pair of elements i, j ∈ I s.t. i < j and I ∩ [i, j] = {i, j}.

Definition 8 (Prefix-skeleton sampling). Let ρ be a track of a Kripke struc-
ture K = (AP ,W, δ, µ, w0). Given two ρ-positions i and j, with i ≤ j, the prefix-
skeleton sampling of ρ(i, j) is the minimal set P of ρ-positions in the interval [i, j]
satisfying: (i) i, j ∈ P ; (ii) for each state w ∈W occurring along ρ(i+ 1, j − 1),
the minimal position k ∈ [i+ 1, j − 1] such that ρ(k) = w is in P .

From Definition 8, it immediately follows that the prefix-skeleton sampling
P of (any) track ρ(i, j) is such that |P | ≤ |W |+ 2 and i+ 1 ∈ P whenever i < j.

Definition 9 (h-prefix sampling). Let ρ be a track of a Kripke structure K .
For each h ≥ 1, the h-prefix sampling of ρ is the minimal set Ph of ρ-positions
inductively satisfying the following conditions:
– Base case: h = 1. P1 is the prefix-skeleton sampling of ρ;
– Inductive step: h > 1. (i) Ph ⊇ Ph−1 and (ii) for all pairs of consecutive

positions i, j in Ph−1, the prefix-skeleton sampling of ρ(i, j) is in Ph.

The following upper bound to the cardinality of prefix samplings holds.

Property 3. Let h ≥ 1 and ρ be a track of a Kripke structure K . The h-prefix
sampling Ph of ρ is such that |Ph| ≤ (|W |+ 2)h.

We now prove a technical lemma that will be used in the proof of Lemma 2.

Lemma 1. Let h ≥ 1, ρ be a track of K , and i, j be two consecutive ρ-positions
in the h-prefix sampling of ρ. Then, for all ρ-positions n, n′ ∈ [i+ 1, j] such that
ρ(n) = ρ(n′), it holds that ρ(1, n) and ρ(1, n′) are (h− 1)-prefix bisimilar.

Proof. The proof is by induction on h ≥ 1.
– Base case: h = 1. The 1-prefix sampling of ρ is the prefix-skeleton sampling

of ρ. Hence, being i and j consecutive positions in this sampling, for each
position k ∈ [i, j−1], there is ` ≤ i such that ρ(`) = ρ(k). Since ρ(n) = ρ(n′),
states(ρ(1, n))=states(ρ(1, n′)), so ρ(1, n) and ρ(1, n′) are 0-prefix bisimilar.
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– Inductive step: h > 1. By definition of h-prefix sampling, there are two
consecutive positions i′, j′ in the (h− 1)-prefix sampling of ρ such that i, j
are consecutive positions of the prefix-skeleton sampling of ρ(i′, j′).
If i = i′, then j = i + 1, hence, being n, n′ ∈ [i + 1, j], we get that n = n′,
and the result trivially holds.
Now, assume that i 6= i′, thus i > i′. As in the base case, we easily deduce
that ρ(1, n) and ρ(1, n′) are 0-prefix bisimilar. It remains to show that for
each proper prefix ν of ρ(1, n) (resp., proper prefix ν′ of ρ(1, n′)), there is a
proper prefix ν′ of ρ(1, n′) (resp., proper prefix ν of ρ(1, n)) such that ν and
ν′ are (h − 2)-prefix bisimilar. Let us consider a proper prefix ν of ρ(1, n)
(the proof for the other direction is symmetric). Hence, ν = ρ(1,m) for some
m < n. We distinguish two cases:
• m ≤ i. Hence ρ(1,m) is a proper prefix of ρ(1, n′) and the result follows.
• m > i: since i and j are consecutive positions of the prefix-skeleton sam-

pling of ρ(i′, j′), i > i′, and m ∈ [i+ 1, j− 1] (hence m < j′), there exists
m′ ∈ [i′ + 1, i] such that ρ(m′) = ρ(m) and m′ is in the prefix-skeleton
sampling of ρ(i′, j′). Let ν′ = ρ(1,m′). Evidently ν′ is a proper prefix of
ρ(1, n′) (as n′ ≥ i+ 1). Moreover, since m,m′ ∈ [i′ + 1, j′] and i′, j′ are
consecutive positions in the (h−1)-prefix sampling of ρ, by the inductive
hypothesis ν = ρ(1,m) and ν′ = ρ(1,m′) are (h− 2)-prefix bisimilar. ut

The next lemma and the following theorem show how to derive, from any track
ρ of a Kripke structure, another track ρ′, induced by ρ and h-prefix
bisimilar to ρ, such that |ρ′| ≤ (|W | + 2)h+2. By Proposition 2, ρ′ is indistin-
guishable from ρ w.r.t. the fulfilment of any AABBE formula ψ with dB(ψ) ≤ h.

In order to build ρ′, we first compute the (h+ 1)-prefix sampling Ph+1 of ρ.
Next, for all the pairs of consecutive ρ-positions i, j ∈ Ph+1, we consider a track
induced by ρ(i, j), with no repeated occurrences of any state, except at most the
first and last ones (hence, it is no longer than (|W | + 2)). The track ρ′ is just
the ordered concatenation (by means of the ? operator) of all these tracks. The
aforementioned bound on |ρ′| holds as, by Property 3, |Ph+1| ≤ (|W |+2)h+1. The
following preparatory lemma states that ρ and ρ′ are indeed h-prefix bisimilar.

Lemma 2. Let h ≥ 1, ρ be a track of K , and ρ′ = ρ(i1)ρ(i2) · · · ρ(ik) be a track
induced by ρ, where 1 = i1 < i2 < . . . < ik = |ρ| and Ph+1 ⊆ {i1, . . . , ik}, with
Ph+1 the (h+ 1)-prefix sampling of ρ. Then, for all j ∈ [1, k], ρ′(1, j) and ρ(1, ij)
are h-prefix bisimilar.

Notice that, in particular, ρ and ρ′ are h-prefix bisimilar.

Proof. Let Q = {i1, . . . , ik} (hence Ph+1 ⊆ Q) and let j ∈ [1, k]. We prove by
induction on j that ρ′(1, j) and ρ(1, ij) are h-prefix bisimilar. As for the base
case (j = 1), the result holds, since i1 = 1.

Now assume that j > 1. We first show that ρ(1, ij) and ρ′(1, j) are 0-prefix
bisimilar. Clearly, ρ(1) = ρ(i1) = ρ′(1), ρ(ij) = ρ′(j), and states(ρ′(1, j)) ⊆
states(ρ(1, ij)). Now, if, by contradiction, there was a state w such that w ∈
states(ρ(1, ij))\states(ρ′(1, j)), then for all l ∈ Q, with l ≤ ij , ρ(l) 6= w. However,
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the prefix-skeleton sampling P1 of ρ is contained in Q, and the minimal ρ-position
l′ such that ρ(l′) = w belongs to P1. Since w ∈ states(ρ(1, ij)), l′ ≤ ij . Thus, we
get a contradiction, implying that states(ρ′(1, j)) = states(ρ(1, ij)).

It remains to prove that: (1) for each proper prefix ν′ of ρ′(1, j), there exists
a proper prefix ν of ρ(1, ij) such that ν and ν′ are (h− 1)-prefix bisimilar, and
(2) for each proper prefix ν of ρ(1, ij), there exists a proper prefix ν′ of ρ′(1, j)
such that ν and ν′ are (h− 1)-prefix bisimilar.

As for (1), let ν′ be a proper prefix of ρ′(1, j). Hence, there exists m ∈ [1, j−1]
such that ν′ = ρ′(1,m). By the inductive hypothesis, ρ′(1,m) and ρ(1, im) are
h-prefix bisimilar, and thus (h − 1)-prefix bisimilar as well (Property 2). Since
ρ(1, im) is a proper prefix of ρ(1, ij), by choosing ν′ = ρ(1, im) (1) follows.

As for (2), assume that ν is a proper prefix of ρ(1, ij). Therefore, there exists
n ∈ [1, ij − 1] such that ν = ρ(1, n). We distinguish two cases:
– n ∈ Ph+1. Since n < ij , there exists m ∈ [1, j − 1] such that n = im. By

the inductive hypothesis, ρ(1, n) and ρ′(1,m) are h-prefix bisimilar, and thus
(h− 1)-prefix bisimilar as well (Property 2). Since ρ′(1,m) is a proper prefix
of ρ′(1, j), by choosing ν′ = ρ′(1,m) (2) follows.

– n /∈ Ph+1. It follows that there exist two consecutive positions i′ and j′ in
Ph+1, with i′ < j′, such that n ∈ [i′+ 1, j′−1]. By definition of (h+ 1)-prefix
sampling, there exist two consecutive positions i′′ and j′′ in the h-prefix
sampling of ρ, with i′′ < j′′, such that i′ and j′ are two consecutive positions
in the prefix-skeleton sampling of ρ(i′′, j′′).
First, we observe that i′ 6= i′′ (otherwise, j′ = i′ + 1, which contradicts the
fact that [i′ + 1, j′ − 1] 6= ∅, as n ∈ [i′ + 1, j′ − 1]). Thus, by definition of
prefix-skeleton sampling applied to ρ(i′′, j′′), and since n ∈ [i′ + 1, j′ − 1],
there must be ` ∈ [i′′ + 1, i′] such that ρ(`) = ρ(n) and ` is in the prefix-
skeleton sampling of ρ(i′′, j′′). Hence ` ∈ Ph+1 by definition of (h+ 1)-prefix
sampling. As a consequence, since ` < n < ij , there exists m ∈ [1, j− 1] such
that ` = im. By applying Lemma 1, we deduce that ρ(1, n) and ρ(1, im) are
(h− 1)-prefix bisimilar. Moreover, by the inductive hypothesis, ρ(1, im) and
ρ′(1,m) are (h− 1)-prefix bisimilar. Thus, by choosing ν′ = ρ′(1,m), ν′ is a
proper prefix of ρ′(1, j) which is (h− 1)-prefix bisimilar to ν = ρ(1, n). ut

Theorem 1 (Exponential-size model-track property for AABBE). Let ρ
be a track of a Kripke structure K and h ≥ 0. Then, there exists a track ρ′ induced
by ρ, whose length is at most (|W |+ 2)h+2, such that for every AABBE formula
ψ with dB(ψ) ≤ h, it holds that K , ρ |= ψ iff K , ρ′ |= ψ.

Proof. Let Ph+1 be the (h+ 1)-prefix sampling of ρ. For all pairs of consecutive
ρ-positions i and j in Ph+1, there exists a track induced by ρ(i, j) having length at
most |W |+2, featuring no repeated occurrences of any internal state. We now de-
fine ρ′ as the track of K obtained by concatenating in order all these induced tracks
by means of the ? operator. It is immediate to see that ρ′ = ρ(i1)ρ(i2) · · · ρ(ik),
for some indexes 1 = i1 < i2 < · · · < ik = |ρ|, where {i1, . . . , ik} contains the
(h + 1)-prefix sampling Ph+1 of ρ. It holds that |ρ′| ≤ |Ph+1| · (|W | + 2) and
since, by Property 3, |Ph+1| ≤ (|W |+ 2)h+1, we obtain that |ρ′| ≤ (|W |+ 2)h+2.
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Moreover, by Lemma 2, ρ and ρ′ are h-prefix bisimilar. By Proposition 2, the
result follows. ut

Theorem 1 allows us to easily devise an EXPSPACE MC algorithm for
AABBE formulas (and symmetrically for AAEBE formulas) which is basically the
same as that presented in [15]. However, in that paper, the authors prove—in a
much more involved way—the existence of a bound on the length of equivalent
induced tracks which is greater than the present one, that is, O(|W |2h+4).

5 Conclusions and Future Work

In this paper, we dealt with the problem of finding bounded representatives of
tracks of a Kripke structure to solve the MC problem for the HS fragments
AABBE and AAEBE. The proposed solution slightly reduces the bounds for track
representatives given for the same problem in [15]; moreover, it substantially
simplifies the constructions and the complexity of the proofs. As for future work,
we would like to precisely characterize the complexity of MC for AABBE and
AAEBE. At the moment, we only know that it belongs to EXPSPACE and it is
PSPACE-hard [14]. More generally, we are looking for possible improvements to
known complexity results for MC of (full) HS. We know that it is EXPSPACE-
hard (we proved EXPSPACE-hardness of its fragment BE [2]), while the only
available decision procedure is nonelementary [13].
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1 Introduction

In mainstream languages with state and explicit mutations, unwanted aliasing
relations are common bugs. This is exasperated by concurrency mechanisms,
since unpredicted aliasing can induce unplanned/unsafe communication points
between threads.

For these reasons, a massive amount of research, see, e.g., [16,9,11,6], has been
devoted to make programming with side-effects easier to maintain and understand,
notably using type modifiers to control state access. In this paper, we will use five
type modifiers (mut, imm, capsule, lent, read) to obtain a fine-tuned control of
immutability and aliasing properties.

Let us consider the store as a graph, where nodes contain records of fields,
that may be references to other nodes. Each node determines a subgraph, that
of all the nodes reachable from it. Let x be a reference to a node in the graph.
Is x is mutable, then it can be freely used, and we cannot make any assumption
on it. If x is immutable, then x.f=e is not allowed, and we can assume that the
subgraph reachable from x will not be modified through any other reference. An
immutable reference can be safely shared also in a multithreaded environment.
If x is a capsule, then we can assume that the subgraph reachable from x is
an isolated portion of store, that is, all its (non immutable) nodes cannot be
reached through other references. Capsule references can be used only once, as
both mutable or immutable, e.g., to initialize a mutable/immutable reference. In
other words, a capsule reference can be seen as a reference whose destiny has
not been decided yet. Moreover, if a capsule reference x is assigned to a mutable
one y, then (in that moment) no part of this subgraph can be updated through a
reference different from y. This allows to identify mutable state that can be safely
handled by a thread. If x is lent, then it can be used in a restricted way, so that

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 62–74
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720
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no aliasing can be introduced that would make possible to reach the subgraph
of x. Finally, readable references can neither be modified nor aliased. These last
two modifiers ensure intermediate properties used to derive the immutable and
capsule properties.

Whereas (variants of) such modifiers have appeared in previous literature
(see Sect.4 for a discussion on related work), there are two key novelties w.r.t.
similar proposals. First, the expressivity of the type system is greatly enhanced.
Indeed, modifiers restrict, as described above, the use of a reference in a context,
but this restriction can be escaped by promotion, at the price of restricting the
use of other references. Second, it is possible to express and check aliasing and
immutability property directly on source terms, without introducing invariants
on an auxiliary structure which mimics physical memory. Indeed, we adopt an
innovative execution model [12,4,14] for imperative languages which, differently
from traditional ones, is a pure calculus.

In this extended abstract, due to space constraints, we focus on the type
system, and only illustrate the calculus by simple examples. We refer to the full
paper [8] for reduction rules, more examples and proofs of results.

The rest of the paper is organized as follows: we provide syntax and an
informal introduction in Sect.2, formalize the type system and state results in
Sect.3, discuss related work, paper contribution and further work in Sect.4.

2 Informal introduction

Syntax and types are given in Fig.1. We assume sets of variables x, y, z, . . . ,
class names C, field names f, and method names m. We adopt the convention
that a metavariable which ends by s is implicitly defined as a (possibly empty)
sequence, for example xs is defined by xs ::= ε | x xs, where ε denotes the empty
sequence.

cd ::= class C {fds mds} class declaration
fd ::= imm C f | mut C f | int field declaration
md ::= T m µ (T1 x1, . . . ,Tn xn) {return e} method declaration
e ::= x | e.f | e.m(es) | e.f=e | new C(es) | {ds e} expression
d ::= T x =e; variable declaration

T ::= µC | int type
µ ::= imm | mut | capsule | lent | read type modifier
dv ::= T x =v; evaluated declaration
u,v ::= x | new C(xs) | {dvs x} | {dvs new C(xs)} value

Fig. 1: Syntax and types

The syntax mostly follows Java and Featherweight Java (FJ) [10]. A class
declaration consists of a class name, a sequence of field declarations and a sequence
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of method declarations. A field declaration consists of a field type and a field
name. A method declaration consists, as in FJ, of a return type, a method name,
a list of parameter names with their types, and a body which is an expression.
However, there is an additional component: the type modifier for this, which is
placed after the method name. As in FJ, we assume for each class a canonical
constructor whose parameter list exactly corresponds to the class fields, and we
assume no multiple declarations of classes in a class table, fields and methods in
a class declaration.

For expressions, in addition to the standard constructs of imperative OO
languages, we have blocks, which are sequences of variable declarations, followed
by a body which is an expression. Variable declarations consist of a type, a
variable and an initialization expression. Types are class names decorated by a
type modifier. We also include int as an example of primitive type, but we do not
formally model related operators used in the examples, such as integer constants
and sum. We assume no multiple declarations for variables in a block.

Values are references x, object states, that is, constructor invocations where
arguments are references, or blocks in which declarations are evaluated, that is,
initialization expressions are values, and the body is a reference or an object state.

     B	
	f=	

x	
= 

     B	
	f=	

y	
= 

  

z	
= 

     D	
	f=0	

     D	
	f=1	

x	
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     D	
	f=2	

y	
= = 

     C	
f1=	
f2=	
f3=	

w	
= 

(a) (b) 

Fig. 2: Graphical representation of the store

Blocks are a funda-
mental construct of
our language, since se-
quences of local vari-
able declarations, when
evaluated, are used
to directly represent
store in the language
itself. For instance4,
assuming that class B
has a mut field of type
B:
mut B x= new B(y); mut B y= new B(x); x
the two declarations can be seen as a store where x denotes an object of class B
whose field is y, and conversely, as shown in Fig.2(a). The whole block denotes a
store with an entry point (graphically represented by a thick arrow), that is, an
object.

Moreover, store is hierarchical, rather than flat as it usually happens in models
of imperative languages. For instance, assuming that class C has two mut and
one imm D fields, and class D has an integer field, the following is a store:
imm D z= new D(0);
imm C w= {mut D x= new D(1); mut D y= new D(2); new C(x,y,z)}
Here, the value associated to w is a block introducing local declarations, that is,
in turn a store, as shown in Fig.2(b). The advantage of this hierarchical shape
is that it models in a simple and natural way constraints about aliasing among
objects, notably:
4 In the examples, we omit for readability the brackets of the outermost block.
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– the fact that an object is not referenced from outside some enclosing object
is directly modeled by the block construct: for instance, the objects denoted
by x and y can only be reached through w

– conversely, the fact that an object does not refer to the outside is modeled by
the fact that the corresponding block is closed, that is, has no free variables5:
for instance, the object denoted by w is not closed, since it refers to the
external object z.

In the graphical representation, variables circled in red are mutable references,
whereas the ones circled in green are immutable. Note that the reference corre-
sponding to new C(x,y,z) is anonymous. Note also that, in this example, mutable
variables in the local store of w are not visible from the outside. This models in a
natural way the fact that the portion of store denoted by w is indeed immutable,
as will be detailed in the sequel.

We illustrate now the meaning of the modifiers mut, imm, and capsule. A
mutable variable refers to a portion of store that can be modified during execution.
For instance, the block
mut B x= new B(y); mut B y= new B(x); x.f = x

reduces to
mut B x= new B(x); mut B y= new B(x); x

We give a graphical representation of this reduction in Fig.3. In the graphical
representation, we highlight in grey expressions which are not values. So in (a)
the body of the block is the expression x.f=x, whose evaluation modifies the field
f of x, and returns x. The result of the reduction is shown in (b).
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	f=	

y	
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     B	
	f=	

x	
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     B	
	f=	

y	
= 

x.f=x	

(a) (b) 

Fig. 3: Example of reduction (1)

Variables declared
immutable, instead, once
they have an associ-
ated value, cannot be
modified. Immutabil-
ity is deep, that is, all
the nodes of the reach-
able object graph of
an immutable refer-
ence are immutable
themselves. Therefore, in the enclosing scope of the declaration
imm C w= {mut D x= new D(1); mut D y= new D(2); new C(x,y,z)}

the variable z must be declared imm, and we cannot have an assignment to a field
of w.

A variable declared capsule refers to an isolated portion of store, where local
objects can freely reference each other but for which the current variable is the
only external reference. For instance:
capsule B z = { mut B x= new B(y); mut B y= new B(x); x }

5 In other words, our calculus smoothly integrates memory representation with shad-
owing and α-conversion.
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The internal objects denoted by x and y can be only be accessed through z. A
capsule variable is a temporary reference, to be used once and for all to “move”
an isolated portion of store to another node in the store. To get more flexibility,
external immutable references are freely allowed. For instance, in the example
above of the declaration of w, the inizialization expression has a capsule type. In
our type system, capsule types are subtypes of both mutable and immutable types.
Hence, capsule expressions can initialize both mutable and immutable references.
However, to preserve the capsule property, we need a linearity constraint: in
well-formed expressions capsule references can occur at most once in their scope.

Consider the term
mut D y=new D(0);
capsule C z={ mut D x=new D(y.f=y.f+1); new C(x,x)}

In Fig.4(a) we have a graphical representation of this term, where the variable
circled in blue is a capsule reference.
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Fig. 4: Example of reduction (2)

The evaluation of
the expression on the
right-hand side of x
starts by evaluating
y.f+1, which triggers
the evaluation of y.f.
The result is shown
in (b), then the sum
0+1 is evaluated, re-
turning 1, as shown
in (c). The evalua-
tion of the field assign-
ment y.f=1, updates
the field f of y to
1, and 1 is returned.
Since new D(1) is a
value, the whole term
is fully evaluated, and
it is shown in (d).

To be able to typecheck more expressions as capsule or imm, we introduce
the lent and read modifiers. References with such modifiers can be used in a
restricted way. Notably, they can be used to access fields, but cannot be used
either on the left or the right-hand side of an assignment or in an object creation.
For lent references this restriction is not permanent, in the sense that it is
possible to freely use a lent reference in a subexpression at the price of restricting
other references, as will be detailed in the following section. Clearly, wherever
a lent reference is required we could use a mutable one, so there is a subtyping
relation between lent and mut modifiers. In some cases it is possible to move
the type of an expression against the subtype hierarchy, that is, to promote an
expression. Notably, a mut expression can be promoted to capsule, and a read
expression can be promoted to imm, provided that some of the free variables in
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the expression are used in a restricted way. The situation is graphically depicted
in Fig.5. Promotions will be described in the next section.

M

C

I

L

R Nodes:

M Mutable: alias, write

I Immutable: alias, no write

C Capsule: unique access
Reference used only once

L Lent: no alias, write

R Readable: no alias, no write

Arrows: Subtype
Promotion

The subtyping relation on
types is the reflexive and tran-
sitive closure of the relation
induced by

µC ≤ µ′ C if µ ≤ µ′

capsule ≤ mut ≤ lent ≤ read
capsule ≤ imm ≤ read

Fig. 5: Type modifiers and their relationships

3 Type system and results

A type context ∆ = Γ ; xss; ys consists of a usual assignment of types to variables
Γ = x1:T1, . . . , xn:Tn, and two additional components xss and ys. Accordingly
with our convention, xss is a sequence xs1 . . . xsn of sequences of variables, and
ys is a sequence of variables. All such sequences are assumed to be sets (that is,
order and repetitions are immaterial).

Sets xs1 . . . xsn are pairwise disjoint, and their elements are variables of mut
type in Γ , hence they describe a partition of such variables in n+ 1 sets, called
groups, the last being the set of those not belonging to any xsi, called the current
group. Elements of ys are variables of mut, lent or read type in Γ . The sets xss
and ys model restrictions on the variables in Γ , as motivated below.

The type system must assure that, if for an expression e we derive type T, then
the evaluation of the expression produces a value with the property expressed
by T. For instance, if the following two variable declarations are well-typed
capsule B z1 = e1; imm B z2 = e2; then the evaluation of the expressions e1
and e2 in the context of a well-typed program should produce values which are
capsule and immutable, respectively, in the sense introduced in the previous
section.

Let us discuss, for instance, when an expression could be safely typed capsule.
Obviously, this is safe for an expression with no free variables, or where all the free
variables are immutable. However, this requirement is too strong. For instance,
consider the following sequence of declarations:
mut D y=new D(0); capsule C z={ mut D x=new D(y.f); new C(x,x)};

The inner block (right-hand side of the declaration of z) can be typed capsule,
even though there is a mutable free variable y, since this variable is only used in
a field access. However, if we had y instead of new D(y.f), the declaration would
not be well-typed, since through the variable y we would refer to the reachable
graph of z.
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Formally, the inner block can be typechecked in a type context where xss
consists of only one singleton group containing variable y. This means that this
variable, which was originally mut, is restricted to lent when typechecking the
inner block, hence no aliasing can be introduced between y and the final result
of the block.

In general, in the typing judgment Γ ; xss; ys ` e : T, the sets xss and ys model
restrictions on aliasing which could be possibly introduced by the evaluation
of the expression. That is, if xs and xs′ are two different groups in xss, and if
their reachable graphs were disjoint before the evaluation of the expression, then
after the evaluation they would be still disjoint. Analogously, no aliasing can be
introduced between the reachable graph of any group xs in xss and that of the
result. The same constraint holds for the portion of store reachable from the
variables in ys. These restrictions are achieved as follows:

– a mut variable in Γ which belongs to a group in xss is lent-restricted, that is,
can only be used as lent

– a read, lent or mut variable in Γ which belongs to ys is strongly-restricted,
that is, cannot be used at all.

Variables become restricted as an effect of applying promotion rules (t-
capsule) and (t-imm), and restricted variables can be temporarily unrestricted
by applying (t-swap) and (t-unrst) rules, as will be explained in detail later.

Typing rules are given in Fig.6. In the rules we use information extracted
from the class table, which is modelled, as usual, by the following functions:

– fields(C) gives, for each declared class C, the sequence of its fields declarations
– method(C,m) gives, for each method m declared in class C, the tuple
〈T, µ,T1 x1 . . .Tn xn, e〉 consisting of its return type, type modifier for this,
parameters, and body.

We assume method bodies to be well-typed w.r.t. the type annotations in the
method declaration. Formally, if
method(C,m) = 〈T, µ,T1 x1 . . .Tn xn, e〉, then it should be Γ ; ∅; ∅ ` e : T, with
Γ = this:µC, x1:T1, . . . , xn:Tn.

Rules (t-capsule) and (t-imm) model promotions, that is, can be used to pro-
mote an expression from a more general to a more specific type, under the
conditions that some free variables in the expression are restricted. There are
two kinds of promotion:

– mut⇒ capsule
As shown in rule (t-capsule), an expression can be typed capsule in Γ ; xss; ys
if it can be typed mut by lent-restricting the current group of mutable variables
(xs). Formally, this group is added to xss.

– read⇒ imm
As shown in rule (t-imm), an expression can be typed imm in Γ ; xss; ys if it
can be typed read by strongly-restricting, rather than ys only, all currently
available mutable, lent, and readable variables (dom≥mut(Γ )). The current
group of mutable variables (xs) is also added as a new group to xss.
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Note that set difference in the side conditions makes sense since xss is assumed
to be a set.

(t-capsule)
Γ ; xss xs; ys ` e : mut C
Γ ; xss; ys ` e : capsule C

xs = dommut(Γ )\xss

(t-imm)
Γ ; xss xs; dom≥mut(Γ ) ` e : read C

Γ ; xss; ys ` e : imm C
xs = dommut(Γ )\xss

(t-swap)
Γ ; xss xs′; ys ` e : µC
Γ ; xss xs; ys ` e : µ′ C

xs′ = dommut(Γ )\(xss xs)

µ′ =
{

lent if µ = mut
µ otherwise

(t-unrst)
Γ ; xss; ∅ ` e : µC
Γ ; xss; ys ` e : µC

µ ≤ imm (t-sub)
∆ ` e : T
∆ ` e : T′

T ≤ T′

(t-var)
Γ ; xss; ys ` x : T′

Γ (x) = T ∧ x /∈ ys

T′ =
{

lent C if T=mut C ∧ x ∈ xss
T otherwise

(t-field-access)
∆ ` e : µC
∆ ` e.fi : T′i

fields(C) = T1 f1 . . .Tn fn
T′
i =

{
µCi if Ti = mut Ci
Ti otherwise

(t-meth-call)
∆ ` ei : Ti ∀i ∈ 0..n

∆ ` e0.m(e1, . . . , en) : T
T0 = µC
method(C,m) = 〈T, µ,T1 x1 . . .Tn xn, e〉

(t-field-assign)
∆ ` e : mut C ∆ ` e′ : Ti

∆ ` e.fi=e′ : Ti

fields(C) = T1 f1 . . .Tn fn

(t-new)
∆ ` ei : Ti ∀i ∈ 1..n

∆ ` new C(e1, . . . , en) : mut C
fields(C) = T1 f1 . . .Tn fn

(t-block)

Γ [Γ ′]; xss′; ys ` ei : Ti ∀i ∈ 1..n
Γ [Γ ′]; xss′; ys ` e : T

Γ ; xss; ys ` {T1 x1 =e1; . . .Tn xn =en; e} : T

Γ ′ = x1:T1, . . . , xn:Tn
xss = xss′

|dommut(Γ )

Fig. 6: Typing rules

Along with promotion rules, we have two rules which make it possible to
temporarily unrestrict some of the restricted variables. In the detail:

– (t-swap) an expression can be typed in Γ ; xss xs; ys if it can be typed by
unrestricting some group (xs) of lent-restricted variables, by swapping this
group with the current group of mutable variables (xs′). The type obtained
in this way is weakened to lent, if it was mut.
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– (t-unrst) an expression can be typed in Γ ; xss; ys if it can be typed by unre-
stricting all strongly-restricted variables ys, provided that the type obtained
in this way is capsule or imm.

We illustrate in more detail typing rules (t-capsule) and (t-swap) for capsule
promotion. Since in the premises of rule (t-capsule) all the mutable variables in
Γ are lent-restricted, the reachable graph obtained by evaluating e will contain
mutable references only to local variables, which cannot be accessed from outside
their scope. So the modifier of the expression can be promoted to capsule. Note
that, if, for the expression e, we derive a type with a lent modifier, then the
result of the evaluation of e could be an external mutable reference, therefore
the value would not be a capsule.

Consider now the case in which, in the evaluation of a capsule expression,
we need to perform some field assignment, as in the example of Fig.4. Typing
rule (t-capsule) can be applied if the initialization expression of z can get type
mut C in a context with type assignment y:mut D,z: capsule C and the group y
of lent-restricted variables. However, the assignment y.f=y.f+1 is not well-typed
in this type context, since the variable y has type lent D. However, intuitively, we
can see that the assignment does not introduce any alias between y and the final
result, since it involves only variables which are in the same group (the singleton
y), and produces an immutable result (of type int). So, it should be possible to
promote the expression to a capsule.

To allow such typing, we introduce rule (t-swap), that removes the (lent)
restriction on the variables of one of the groups, say xs, so that the variables in
xs can be used as mutable, adding to xss a group xs′, containing all the mutable
variables in Γ which are not lent-restricted yet. In this way, we know that the
evaluation of the expression will not introduce any alias between the variables
in the swapped group and the current group of mutable variables. Moreover, if
we derive, in this new context, an immutable or capsule type, we know that the
result of the expression will be a value that can be freely used. In our example,
we can apply rule (t-swap) when deriving the type for y.f=y.f+1, swapping the
group y with x. Instead, if we derive a mutable type, then this type is weakened
to lent, since the result could contain references to the variables in group xs′,
which were lent-restricted in the original context. This is shown by the following
example:
mut D y=new D(x1 ,x2 ); mut x1=new A(0); mut x2 = new A(1);
capsule C z={ mut A x=(y.f1=y.f2); new C(x,x)};

If we apply rule (t-swap) when deriving the type for y.f1=y.f2, therefore swapping
the group y with x, then we derive type mut A, and rule (t-swap) would assign
type lent A to the expression. Therefore, the declaration mut A x=(y.f1=y.f2)
and the whole expression would be ill-typed. Indeed, the expression reduces to
mut D y=new D(x2 ,x2 ); mut x1=new A(0); mut x2 = new A(1);
capsule C z={ mut A x=x2; new C(x,x)};

in which the value of z is not a capsule.
In rule (t-block), we write Γ [Γ ′] for the concatenation of Γ and Γ ′ where,

for the variables occurring in both domains, Γ ′ takes precedence. Moreover,
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xss|xs denotes the sequence obtained from xss by keeping (in each element of the
sequence) only the variables in xs. A block is well-typed if the right-hand sides
of declarations and the body are well-typed w.r.t. a type context consisting of:
– the type assignment of the enclosing scope Γ , updated by that of the locally
declared variables Γ ′

– groups of lent-restricted variables xss, where a locally declared (mutable)
variable can belong to any group, however preserving the partition in groups
of the enclosing scope, as imposed by the second side condition

– the strongly-restricted variables ys of the enclosing scope.
Typechecking a block with some local variables lent-restricted in the same group
of some variables of the enclosing scope can be necessary. Consider the following
example
mut D z=new D(0); mut C x=new C(z,z);
capsule D y={ mut D z1=new D(1); lent D z2=(x.f1=z1); new D(1)};
Since we need to apply the promotion to capsule to the block on right-hand
side of the declarations of y, the context of the typing of the block must be
z : mut D, x : mut C, y : capsule D; z x; ∅, that is, z and x are in the same group of
lent-restricted variables. However, to apply rule (t-field-assign) to the expression
x.f1=z1, both x and z1 have to be mutable6. Therefore, we have to apply rule
(t-swap), and it must be the case that both x and z1 are in the same group of
lent-restricted variables. This is possible, with rule (t-block), by adding z1 to the
group x z, in typing the right-hand sides of the declarations.

Other rules are mostly standard, except that they model the expected be-
haviour of type modifiers.

In rule (t-var), a variable is weakened to lent if it belongs to some group in
xss, and cannot be used at all if it belongs to ys.

In rule (t-field-access), in case the field is mut, the type modifier of the
receiver is propagated to the field. For instance, mutable fields referred through
a lent reference are lent as well. If the field is immutable, instead, then the
expression has type imm, regardless of the receiver type.

In rule (t-field-assign), the receiver should be mutable, and the right-hand
side must have the field type. Note that this implies the right-hand side to be
either mut or imm (or of a primitive type). Hence, neither the left-hand nor the
right-hand sides can be lent or read, thus preventing the introduction of aliases.

In rule (t-new), analogously, expressions assigned to fields cannot be lent.
Note that an object is created with no restrictions, that is, as mut.

Finally, note that primitive types are used in the standard way. For instance, in
the premise of rule (t-new) the types of constructor arguments could be primitive
types as well, whereas in rule (t-meth-call) the type of receiver could not.

Results The type system is sound for the operational semantics, that is, subject
reduction and progress hold. Note that, since our operational model is a pure
calculus, in the statements and proofs we do not need invariants on auxiliary
structures such as memory.
6 Assuming that field f1 is mutable.
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The reduction relation e −→ e′ is defined in the full paper [8]. We write
` e : T for ∅; ∅; ∅ ` e : T.

Theorem 1. Let ` e : T. Then, either e is a value or e −→ e′ for some e′ such
that ` e′ : T is derivable.

In addition to the standard soundness property, the capsule and imm modifiers
have the expected behaviour, that is, in the evaluation of a well-typed expression,

– initialization expressions of capsule variables reduce to values whose free
variables are immutable, and

– values associated to immutable variables are not modified by the evaluation.

The formalization and proof of these properties can be found in the full paper
[8].

4 Related work and conclusion

A first, informal, version of our type modifiers has been presented in [13]. In [14]
were introduced the capsule and lent modifiers, and a preliminary version of
the promotion from mutable to capsule. The main novelties w.r.t. [14] are the
introduction of the immutable and readable modifiers, the readable to immutable
promotion, the formalization of the type system, and the proof of its properties.

Our type system combines in a novel and powerful way different features
existing in previous work. Notably, the capsule notion has many variants in the
literature, such as external uniqueness [5], balloon [1,13], island [7], recovery [9],
and the fact that aliasing can be controlled by using lent (borrowed) references
is well-known [11].

However, in our type system the lent notion is used in a novel way to achieve
capsule promotion, since external mutable references are not forbidden once and
for all as in recovery [9] but only lent-restricted, as illustrated by the last example
in Sect.2.

Moreover, uniqueness is guaranteed by linearity, that is, by allowing at most
one use of a capsule reference, rather than by destructive reads as in [9,3].
Destructive reads allows isolated fields, but has a serious drawback: an isolated
field can become unexpectedly not available, hence any object contract involving
such field can be broken.

Our read modifier is different from readonly as used, e.g., in [2]. An object
cannot be modified through a readable/readonly reference. However, read also
prevents static aliasing.

Javari [15] is a working backward-compatible extension of Java which also
supports the readonly type modifier, and makes a huge design effort to support
assignable and mutable fields, to have fine-grained readonly constraints. The need
of such flexibility is motivated by performance reasons. In our design philosophy,
we do not offer any way to a programmer of breaking the invariants enforced by
the type system. Since our invariants are very strong, we expect compilers to
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be able to perform optimization, thus recovering most of the efficiency lost to
properly use immutable and readable objects.

Finally, the Pony language [6], providing an implementation as well, builds
on the capabilities/recovery mechanisms of [9] as we do, but goes in a different
direction, by distinguishing six different reference capabilities: isolated (similar
to our capsule, but allowed in fields with destructive reads); value (similar to
our immutable); reference (similar to our mutable); box (similar to readonly);
tag (only allows object identity checks) and finally transition (a subtype of box
that can be converted in value: a way to create values without using isolated
references).

The key contributions of the paper are:
– A powerful type system for tracing mutation and aliasing in class-based
imperative languages, providing: type modifiers for restricting the use of
references; rules for promoting references to a less restrictive type at the price
of restricting other references; rules for temporarily unrestricting references
for typing subexpressions.

– A non standard operational model of the language as a pure calculus, relying
on the language ability to represent cyclic object graphs.
This work is part of the development of L42, a novel programming language

designed to support massive use of libraries, see the web site L42.is. The current
L42 prototype is important as proof-of-evidence that the type system presented
in this paper can be smoothly integrated with features of a realistic language. The
prototype implements an algorithmic version of the type system which, roughly,
attempts at applying promotions in all the possible ways, which are finitely many
and, in practice, very few. A theoretical counterpart of such algorithmic version
will be subject of further work. As a long term goal, we also plan to investigate
(a form of) Hoare logic on top of our model. Finally, it should be possible to use
our approach to enforce safe parallelism, on the lines of [9,13].

Acknowledgments.We are grateful to the anonymous reviewers for their useful
suggestions, which led to substantial improvements.
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Abstract. We propose a language design where types can be enriched
by tags corresponding to predicates written by the programmer. For in-
stance, int&positive is a type, where positive is a user-defined boolean
function on integers. Expressions of type int&positive are obtained by
an explicit check construct, analogous to cast, e.g., (positive) 2. In this
way, the fact that the value of an expression is guaranteed to succeed a
runtime check is a static property which can be controlled by the type
system. We formalize our proposal as an extension of the simply-typed
lambda calculus, and prove, besides soundness, the fact that expressions of
tagged types reduce to values which satisfy the corresponding predicates.

1 Introduction

It is very common in programming that an application needs to handle only
values which satisfy properties which can be checked through user-defined code.
As a very simple example, integer numbers which are odd, or positive, or prime.
In nominally typed languages, it is possible to declare specialized types which
enforce/encode such invariants. This is obtained by performing runtime checks
on the arguments of the constructor of the new type. There are two variations of
this technique, the first is wrapping the original type, and the second is extending
it. We describe them, by examples, using Java syntax.

The first solution is illustrated by the example of odd numbers:

class Odd{
public final int inner ;
public Odd(int inner ){

if (inner %2==0){// not odd
throw new Error (...); }

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference
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this.inner= inner ;
}

}

Here we encode by wrapping, in such a way that all instances of Odd will always
contain an odd number. In particular, every method taking as input an Odd
argument myOdd can rely on the (static) guarantee that myOdd.inner is an odd
number.

The second solution is illustrated by an example of points with positive
coordinates:

class Point {int x; int y ;...}
class PositivePoint extends Point{

public PositivePoint (int x, int y){
super(x,y);// checks parent invariant
if (x<0 || y <0){// not positive

throw new Error (...); }
}

}

Here we encode by extending the original type (class), calling the super construc-
tor and then checking for more properties. Again, every method taking in input
a PositivePoint may assume that the coordinates are positive numbers.

Both patterns could be verified by tools like Spec# [3] or Viper [9].4
Comparing the two solutions, we can say that:

– Wrapping can be always applied, while extending cannot be applied on prim-
itive types and final classes.

– While extending implies subtyping, a wrapped value has not a subtype of
the original type, thus forcing extra boilerplate code in the points of usage
to access the inner value.

– On the other hand, wrapping can be applied to existing values, while extend-
ing requires the creation of a new value.

– Anyway, both techniques require some amount of boilerplate code.

We propose an alternative approach, whose goal is to synthesize the core concept
behind these techniques: a user-defined predicate is checked on a value, and, in
case of success, the value gets a more specific type, that keeps track of the success
of the runtime test. For instance, we can declare two functions checking whether
an integer is odd or positive, respectively:

bool odd(int i){ return i %2!=0;}
bool positive (int i){ return i >=0;}

4 Viper requires to encode the invariant as constructor postcondition, and to repeat it
in the method precondition, while Spec# needs the assertion to be explicitly stated
in the class contract, and allows strengthening of superclass invariants (as needed in
PositivePoint).
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Then, we can convert an integer to an odd, or to a positive, by a check con-
struct, which has a cast-inspired syntax, and indeed can be seen as a generalization
of cast:5

(odd )35// ok
( positive ) -23 // runtime error
( positive )( odd )79 // checks chain

The expressions above have, respectively, tagged types: int&odd, int&positive,
and int&odd&positive. Tagged types are nominal, since tags are predicate names,
and behave as intuitively expected: tag sequences can be seen as sets (order and
repetition are immaterial), and subtyping corresponds to set inclusion. They can
be used, e.g., as types of local variables:
int& positive &odd myInt =( positive )( odd )79
int& positive anotherInt = myInt //safe , thanks to subtyping

or as types of function parameters/result:
int& positive factorial (int& positive n){

if (n==0){ return 1;}
return n * factorial (( positive ) n -1); }

Note that the function does not need to check whether the argument is positive
(to avoid non termination), since this is ensured by the parameter type. However,
we need the check to perform the recursive call.

The paper is organized as follows. We formalize our proposal and prove its
expected properties in Sect.2. In Sect.3 we discuss related work, and present our
conclusions and further work in Sect.4.

2 The calculus

In this section we introduce syntax, operational semantics, and type system of
our calculus. Moreover, we prove expected properties.

Syntax We formalize our proposal as an extension of the simply-typed (call-by-
value) lambda calculus. Syntax is given in Fig.1. We assume an infinite set of
predicate names P.

Expressions include expressions of the lambda calculus (variable, abstraction
and application) and those defined with operators of primitive types, e.g., the
two boolean constants, and the infinite set of integer constants, ranged over by n.
For simplicity we omit other standard additional constructs, such as conditional,
let-in and recursion. In addition, there are two novel expressions:
– (P)e is a check expression, corresponding to a runtime check that (the value
of) expression e satisfies predicate P. If the runtime check succeeds, then the
result of the check expression will be the value of e tagged by P. In case of
failure, the result will be an error tagged by P.

5 That is, a standard cast expression (C)e can be seen as a particular case of check
expression where the predicate is instanceof C.
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p :: = P=λx : T .e predicate definition

e :: = expression
x | λx : T .e | e1 e2
| true | false | n | . . .
| (P)e check expression
| v&P[e] checking expression

v :: = base value
true | false | n | . . . primitive value
| v&P tagged value

V :: = λx : T .e | v value

E :: = [ ] | E e | V E evaluation context
(P)E | v&P[E ]

t :: = base type
bool | int | . . . primitive type
| t&P tagged type

T :: = T 1 → T 2 | t type
Γ :: = x1:T 1 . . . xn:T n type context
∆ :: = P1:T 1 . . .Pn:T n predicate type context

Fig. 1: Syntax

– v&P[e] is a checking expression, a runtime expression (that cannot be written
by the programmer) which denotes an intermediate step in the runtime check
that value v satisfies predicate P. That is, if e is neither true nor false, then
we still have to evaluate e to complete the check. The checking expressions
v&P[true] and v&P[false], instead, denote the final result of the check, being
success and failure, respectively.

Accordingly with the intuition given above, we will use the following two
shortcuts:
– v&P[true] will be abbreviated by v&P. This is a tagged value, denoting the
result of a successful check of the predicate, hence we can rely on the fact
that P v holds.

– v&P[false] will be abbreviated by error P. This is a dynamic error, tagged
by P to denote that there has been a failure in checking P.

Values are abstractions, or values of primitive types, or tagged values as ex-
plained above. Note that we take a stratified approach, where only non-functional
values can be tagged. Tagged values are identified modulo order and repetitions
of tags, e.g., 1&positive&odd and 1&odd&positive are the same value.

Operational Semantics The reduction relation e→ e′ assumes a given predicate
table PT = p1 . . . pn, which is a sequence of predicate definitions which associate
to a predicate name a lambda expression (expected to be a predicate, that is,
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to return a boolean value). We assume, as usual, that order of definitions is
immaterial, and there are no multiple definitions for the same predicate name.
That is, the predicate table can be seen as a (partial) map from predicate names
to predicates.

Reduction rules are given in Fig.2.

(Ctx)
e→ e′

E [e]→ E [e′] (Ctx-Err) E [error P]→ error P

(App) (λx : T .e) V→ e[V/x]

(Check) (P)v→ v&P[(λx : T .e) v] PT(P) = λx : T .e
v not of shape v′&P

(No-Check) (P)v&P→ v&P

Fig. 2: Reduction rules

The first two rules are standard contextual closure and error propagation
rules. Evaluation contexts, given in Fig.1, are as expected. The third rule is (call-
by-value) application rule. We denote by e[e′/x] the standard capture-avoiding
substitution of occurrences of x in e by e′.

The novel rule (Check) models starting the runtime check that predicate
named P holds on value v, by triggering the evaluation of the corresponding
predicate application. This rule is applied when v is not tagged by P yet. Other-
wise, this means that v is a value obtained through a previous check of predicate
named P, hence it is useless to perform the check again, and the value is directly
returned, as shown in rule (No-Check). Note that an implementation could
keep the tags and follow the same strategy, avoiding useless checks, or be based
on type erasure, but in this case checks should be repeated.

Type System Following the stratified approach mentioned above, there are two
forms of types:
– non-functional types, called base types, which are primitive types possibly
tagged with a sequence of predicate names

– functional types, which cannot be tagged.
As for tagged values, we assume that tagged types are identified modulo order
and repetitions of tags, e.g., int&positive&odd and int&odd&positive are
the same type.

The subtyping relation is given in Fig.3. Rule (Sub-Tag) expresses the
expected property that adding tags we get more specific types, other rules are
standard.

The typing judgment, Γ ` e : T , says that expression e has type T under the
type context Γ , where type contexts, Γ , are sequences of assignments of types to
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(Sub-Tag) t&P ≤ t (Sub-Fun)
T ′

1 ≤ T 1 T 2 ≤ T ′
2

T 1 → T 2 ≤ T ′
1 → T ′

2

(Sub-Tr)
T 1 ≤ T 2 T 2 ≤ T 3

T 1 ≤ T 3
(Sub-Refl) T ≤ T

Fig. 3: Subtyping rules

variables, see Fig.1. In Fig.4 we give the rules for deriving the typing judgment.
We assume a given predicate type context ∆, which is a sequence of assignments
of types to predicate names, see Fig.1.

(T-Var)
Γ ` x : T Γ (x) = T (T-Abs)

Γ, x:T ` e : T ′

Γ ` λx : T .e : T → T ′

(T-App)
Γ ` e1 : T → T ′ Γ ` e2 : T 2

Γ ` e1 e2 : T ′ T 2 ≤ T

(T-Check)
Γ ` e : t

Γ ` (P)e : t&P
∆(P) = t′ → bool
t ≤ t′

(T-Checking)
Γ ` v : t Γ ` e : bool
Γ ` v&P[e] : t&P

∆(P) = t′ → bool
t ≤ t′

(T-Error)
Γ ` v : t

Γ ` v&P[false] : T
∆(P) = t′ → bool
t ≤ t′

Fig. 4: Typing rules

The first three rules of Fig.4 are standard rules of the simply-typed lambda
calculus. We omit obvious rules for boolean and integer constants.

In rule (T-Check), a check expression has the type of the argument tagged
by the predicate name. The argument type t must be a subtype of the parameter
type of the predicate. Note that the explicit subtyping condition, rather than
an implicit subsumption rule, is necessary to assign to the check expression
type t&P, which is possibly more specific than t′&P. For instance, the predicate
positive requires an int, the argument could be an int&odd, and we want to get
an int&odd&positive.

Rule (T-Checking) enforces the restriction that, in a checking expression
of type t&P, the value v must have type t, and the expression e must be of type
bool, so that, if it converges to a value, then the value is either true or false. As
for rule (T-Check), the type of the value must be a subtype of the parameter
type of the predicate.
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Finally, rule (T-Error) states that an error has any type.6 Since we encode
errors as checking expressions where the expression is false7, we also require
for uniformity the same conditions on v of the two previous rules.

Results To prove soundness, expressed as usual by subject reduction and progress
theorems, we assume that the predicates in the predicate table be well-typed
w.r.t. the predicate type context, that is, for all P ∈ dom(PT), ∅ ` PT(P) : ∆(P).
The proof of subject reduction relies on the (standard) substitution and context
lemmas, that follow.

Lemma 1 (Substitution). If Γ, x:T ′ ` e : T , and Γ ` e′ : T ′, then Γ `
e[e′/x] : T .

Lemma 2 (Context). Let Γ ` E [e] : T , then Γ ` e : T ′ for some T ′, and if
Γ ` e′ : T ′′, with T ′′ ≤ T ′, then Γ ` E [e′] : T , for all e′.

Theorem 1 (Subject reduction). Let e be such that, for some Γ and T , we
have that Γ ` e : T . If e→ e′, then Γ ` e′ : T ′ for some T ′ such that T ′ ≤ T .

Proof. By induction on the rule used for e→ e′.
If the rule applied is (Ctx), then we have the thesis by induction hypothesis,

using Lemma 2.

If the rule applied is (Ctx-Err), since error P is abbreviation for v&P[false],
from (T-error) of Fig.4 we have that Γ ` v&P[false] : T . This proves the
thesis.

If the rule applied is (App), then e = (λx : T 1.e1)V, e′ = e1[V/x]. The proof
is standard by using typing rules (T-App), (T-Abs), and Lemma 1.

If the rule applied is (Check), then

1. e = (P)v,
2. e′ = v&P[(λx : t′.ep) v], where PT(P) = λx : t′.ep.

From Γ ` (P)v : T , and typing rule (T-Check) for some t and t′ we have
that: T = t&P, Γ ` v : t, ∆(P) = t′ → bool, and t ≤ t′. Moreover, we know
that ∅ ` PT(P) : t′ → bool. Therefore, also Γ ` PT(P) : t′ → bool. Applying
rule (T-app) of Fig.4, we get that Γ ` (λx : t′.ep) V : bool. Therefore, from
Γ ` v : t, Γ ` (λx : t′.ep) V : bool, ∆(P) = t′ → bool, and t ≤ t′, applying rule
(T-checking) of Fig.4, we derive Γ ` e′ : T .

If the rule applied is (No-Check), then

1. e = (P)v&P[true], and
2. e′ = v&P[true].
6 Recall that this is a standard typing rule in calculi with dynamic errors, needed to
ensure that error propagation, see rule (Ctx-Err), preserves type.

7 We could have, alternatively, one more reduction step into an additional error ex-
pression, but we prefer this more succinct formulation.
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From Γ ` e : T , and typing rule (T-Check) for some t and t′ and we have
that: T = t&P, Γ ` v&P[true] : t, ∆(P) = t′ → bool, and t ≤ t′. From
Γ ` v&P[true] : t, and typing rule (T-Checking) we have that t is already of
shape t′′&P, for some t′′. Therefore, t = T , and Γ ` e′ : t. ut

The proof of progress relies on the canonical forms lemma, which characterizes
the shape of values of specific types.

Lemma 3 (Canonical forms).

1. If ` V : T 1 → T 2, then V = λx : T 1.e.
2. If ` V : bool, then either V = false, or V = true.
3. If ` V : int, then V = n.
4. If ` V : t&P, then V = v&P, i.e., V = v&P[true].

Theorem 2 (Progress). Let e be such that, for some T , we have that ∅ ` e : T .
Then, either e = V, for some V, or e = error P, or e→ e′ for some e′.

Proof. If e 6= V, for some V, and e 6= error P, then either e = e1 e2, or e = (P)e1,
or e = v&P[e1]. We consider the last two cases.

If e = (P)e1, and e1 is not a value or error, then by induction hypothesis
e1 → e2. Therefore, (P)e1 → (P)e2 with (Ctx) and E = (P)[ ].
If e1 = error P, then e→ error P with (Ctx-Err) and E = (P)[ ].
If e1 = V, for some V, from ∅ ` (P)V : T , and typing rule (T-Check), we have
that, for some t and t′: T = t&P, ∅ ` V : t, ∆(P) = t′ → bool, and t ≤ t′.
There are two cases for type t: either t = t′&P for some t′, that is, the type is
already tagged with P, or not.
If t = t′&P for some t′, then, from Lemma 3.4, V = v&P, and rule (no-check)
is applicable. So e→ v&P.
Otherwise rule (check) is applicable, and e→ V&P[(λx : t′.ep) V].

If e = v&P[e1], and e1 is not a value, as in the previous case we can apply
either rule (Ctx) or (Ctx-Err).
If e1 = V, for some V, then, from ∅ ` v&P[e1] : T , and typing rule (T-
Checking), we have that ∅ ` e1 : bool. Therefore, from Lemma 3.2, e1 = true
or e1 = false. If e1 = true, then e is the value v&P, and if e1 = false, then
e = error P. ut

In addition to soundness, we expect the following key property to hold: if
an expression of a tagged type t&P reduces to a value, then this value satisfies
predicate P. This is implied by subject reduction, plus the fact that a value
v of a tagged type t&P satisfies predicate P. The latter property is true “by
construction” in our calculus, provided that we consider as values only the subset
of syntactic values which can be actually obtained by reduction. (Recall that
checking expressions cannot be written by the programmer.) This is formalized
by the notion of admissible expression below.

Definition 1. The expression e is admissible if, for all subexpressions v&P[e′]
of e, we have (λx : T .ep) v→? e′, where PT(P) = λx : T .ep.
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Note that expressions written by the programmer are always admissible since
they do not have subexpressions which are checking expressions.

Lemma 4. If e is admissible, and e→ e′, then e′ is admissible.

Proof. By induction on the reduction rules. The interesting case is:
(Check) (P)v→ v&P[(λx : T .e) v] PT(P) = λx : T .e
In this case, the thesis holds since (λx : T .e) v reduces to itself in zero steps. ut

Theorem 3. Let e be an admissible expression such that, for some Γ and T ,
we have that Γ ` e : T . If e →? v&P, then (λx : T .ep) v →? true, where
PT(P) = λx : T .ep.

Proof. By subject reduction (Theorem 1) and Lemma 4. ut

3 Related work

Constrained types and type invariants The work most closely related to ours are
likely constrained types of X10 [10]. A constrained type C{c} consists of a class
or interface C and a constraint c on the immutable state of C and in-scope final
variables. The system is parametric on the underlying constraint system: the
compiler implements simple equality-based constraints but, in addition, supports
extension with new constraint systems using compiler plugins. For instance, the
constraint solver automatically detects subtyping in cases such as Int[self>5]
≤ Int[self>0]. Their main goal is to support static verification as much as
possible, by allowing in constraints a very restricted subset of the language.8 On
the other hand, in our approach the programmer can express any property in
the predicate language, which is Turing complete being the language itself. This
could be coupled with static verification for conditions expressed in a limited
sub-language, but we do not require all the predicates to be in such category.

Whiley [11] offers type invariants, conceptually similar to constrained types
but, as in our approach, they use the full language in predicates. Whiley is
designed from scratch, with the aim of permitting both dynamic (runtime) ver-
ification and static one. As X10, Whiley attempts at automatically inferring
predicate subtyping. In a personal communication with David Pearce (Whiley
project leader) he agreed that static verification of predicates and subtyping
inference are orthogonal with respect to the main idea of checking a property
and then propagating such knowledge, and that a core model of such idea would
be very valuable.

Another important difference is that, in both X10 and Whiley, interpretation
of predicates is structural, that is, the meaning of a predicate is its definition.
Our interpretation is nominal instead, that is, , the meaning of a predicate is its
name, and the current definition is just an implementation of such concept. Under
our lens, predicate subtyping must be defined explicitly by the programmer, if
needed, see Sect.4.
8 The user is able to escape the confines of static type-checking using dynamic casts,
as in our approach.
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Pre/post conditions In the style of runtime verification, a method can have
preconditions on its arguments that are dynamically checked when the method
is invoked. If the preconditions do not hold, the caller is blamed. Then, before
producing the result, the postcondition is verified. If the postcondition does not
hold, the method implementation is blamed, see, e.g., [8].

In our approach, a method can encode preconditions as types of its parameters,
guaranteeing that the check is performed at the client side.9 Then, the method
may cast the result to a more specific type, as a way to check the postcondition.
An advantage of encoding a precondition as a type is that in this way the
information that a value satisfies the precondition can be propagated to internal
calls with the same precondition, rather than be checked again.

Runtime certification Our work can be seen as a (circular) variation over runtime
certification as in Athena [2]. In a nutshell, a program is runtime certified if, when
results are produced, they are guaranteed to respect certain properties. Runtime
certification is usually proposed together with a specific proof language, different
from the computation language. Our approach instead uses a single language,
and the correctness of a value is defined as the satisfaction of certain predicates
written in the language itself.

Refinement types and blame calculi Refinement types, introduced in [4], are a
system of subtypes for a polymorphically typed language like ML, which are used
to specify properties of user-defined data types. The properties are expressed as
union and intersection of types derived from user defined-types, and are statically
verified by a decidable type inference algorithm. In [7] are defined two hybrid
calculi, λC and λH , whose types include refinement types describing subsets of
base types satisfying predicates. Predicates are, as in our calculus, expressions
of the language evaluating to boolean values. Expressions include a cast, like our
check, which involves checking dynamically that a predicate holds. As for X10
and Whiley, the interpretation of predicates is structural.

The blame calculus, see [12], provides a uniform view of static and dynamic
type checking. Programmers may add casts to evolve statically typed code into
code including refinement types (as in [7], predicates are structural). The blame
calculus is more general than our calculus, since refinement is not limited to base
types, and, in [1], it is extended to a polymorphically typed lambda calculus.
The type system is tailored to detect where the cause of the violation comes
from, and, in particular, it is proved that it may not come from statically typed
code. We claim that, even though our framework is more limited, since we do
not allow properties of functional types, its simplicity, and the nominal approach
to refinement, make it easier to implement and integrate in existing languages,
see next section.

9 Preconditions involving more than one parameter could be encoded by using tuple
types.
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4 Conclusion and future work

We have proposed and formalized a lightweight approach for handling values
which are required to satisfy a property.

Compared to works discussed in the previous section, which generally rely on
separate assertion language, structural interpretation of predicates, and (some)
static verification, our design is less powerful, but easier to integrate and imple-
ment in existing languages.

In particular, we adopt a meta-circular approach, where the property is imple-
mented by the programmer in the language itself. Note that, in this way, checking
that a value has a given property, say P, could lead to divergence. However, the
fact that an expression is guaranteed to succeed the corresponding runtime check
is a static property which can be controlled by the type system. More precisely,
an expression of type t&P can either reduce to a value of the same type, which
is guaranteed to succeed the check, or lead to a dynamic error, or not terminate,
as it happens for any other type.

Note also that by the nominal interpretation of predicates we gain the well-
known advantages of the nominal approach for software evolution: the meaning of
a predicate can change, and a system with structural approach would be fragile.

Our design is in principle language independent. To integrate and implement
check expressions on top of an existing language, they could be translated, by a
pre-processing step, into the application of the corresponding predicate, a function
written in the source language. In an imperative language, analogously to what
is required in other proposals, predicates should be pure functions, and an object
could be ensured to invariantly satisfy a property only under some conditions,
the simplest being that the object is deeply immutable, that is, all its fields
are (recursively) immutable. More permissive conditions could be allowed by
combining the type system with modifiers for aliasing and immutability control,
see, e.g., [6,5]. Interaction with polymorphic types is an interesting topic for
future work. Instantiating polymorphic types with tagged types seems to pose
no problems. Moreover, at a first sight, polymorphic types with tags seem to
make sense in combination with subtyping constraints, e.g., a predicate isempty
which holds when the argument, assumed to be of a subtype of Collection, is
empty.

As future work, we also discuss two extensions.

Predicate subtyping Certain predicates may be stronger than others, for example
we expect greaterThan5 to imply positive. Since these predicates are defined
as code, there is no general way to discover such implications automatically.
However, we could offer a language construct for subtyping relations declared by
the programmer, as usual for nominal types, for example, using again a Java-like
syntax:

bool positive (int x) { return x >=0;}
bool greaterThan5 (int x) { return x >5;}

implies positive
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This extension could be encoded in the original language by expanding occur-
rences of the stronger predicate name to a sequence, for instance:
int& greaterThan5 x=( greaterThan5 )34

would be expanded to
int& greaterThan5 & positive x=( greaterThan5 )( positive )34

Refinement for pre-existing operations One limitation of the proposed approach
is that existing operations are unaware of newly introduced properties.

For example, assume to have a Sum operation encoding the sum of two numbers,
with type int*int->int. If we add the concept of positive, we know that, in a
context where a and b are positive, Sum(a,b) should be positive; but in the current
system it is just an int. An extension of our approach could allow:
SumPosPos refines Sum:

int& positive *int&positive ->int& positive

This extension could be encoded in the original language by declaring an aux-
iliary function SumPosPos which just calls Sum and casts the result to int&positive.
In the case of an overpermissive refinement, the error can be traced back to the
declaration of SumPosPos.

Acknowledgments.We are grateful to the anonymous reviewers for their useful
suggestions, which led to substantial improvements.

References

1. A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In T. Ball
and M. Sagiv, editors, ACM Symp. on Principles of Programming Languages 2011,
pages 201–214. ACM Press, 2011.

2. K. Arkoudas and M. C. Rinard. Deductive runtime certification. Electronic Notes
in Theoretical Computer Science, 113:45–63, 2005. Fourth Workshop on Runtime
Verification (RV 2004).

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS’04 - Construction and Analysis of Safe, Secure and
Interoperable Smart Devices, volume 3362 of Lecture Notes in Computer Science,
pages 49–69. Springer, 2005.

4. T. Freeman and F. Pfenning. Refinement types for ML. In ACM SIGPLAN’91
Conference on Programming Language Design and Implementation, pages 268–277.
ACM, 1991.

5. P. Giannini, M. Servetto, and E. Zucca. Types for immutability and aliasing control
(extended abstract). In ICTCS’16 - Italian Conf. on Theoretical Computer Science,
2016. In this volume.

6. C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and J. Duffy. Uniqueness
and reference immutability for safe parallelism. In ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA
2012), pages 21–40. ACM Press, 2012.



Runtime checks as nominal types 87

7. J. Gronski and C. Flanagan. Unifying hybrid types and contracts. In M. T.
Morazán, editor, TFP 2007 - Trends in Functional Programming, volume 8 of
Trends in Functional Programming, pages 54–70. Intellect, 2007.

8. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design
of JML accommodates both runtime assertion checking and formal verification.
Science of Computer Programming, 55(1-3):185–208, 2005.

9. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,
VMCAI’16 - Verification, Model Checking, and Abstract Interpretation, volume
9583 of Lecture Notes in Computer Science, pages 41–62. Springer, 2016.

10. N. Nystrom, V. A. Saraswat, J. Palsberg, and C. Grothoff. Constrained types for
object-oriented languages. In G. E. Harris, editor, ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA
2008), pages 457–474. ACM Press, 2008.

11. D. J. Pearce and L. Groves. Designing a verifying compiler: Lessons learned from
developing Whiley. Science of Computer Programming, 113:191 – 220, 2015.

12. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In G. Castagna,
editor, ESOP 2009 - European Symposium on Programming, volume 5502 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2009.



On the bisimulation hierarchy of
state-to-function transition systems

Marino Miculan and Marco Peressotti

Dept. of Mathematics, Computer Science and Physics, University of Udine, Italy
marino.miculan@uniud.it marco.peressotti@uniud.it

Abstract Weighted labelled transition systems (WLTSs) are an estab-
lished (meta-)model aiming to provide general results and tools for a wide
range of systems such as non-deterministic, stochastic, and probabilistic
systems. In order to encompass processes combining several quantitative
aspects, extensions of the WLTS framework have been further proposed,
state-to-function transition systems (FuTSs) and uniform labelled transi-
tion systems (ULTraSs) being two prominent examples. In this paper we
show that this hierarchy of meta-models collapses when studied under
the lens of bisimulation-coherent encodings.

1 Introduction

Weighted labelled transition systems (WLTSs) [10] is a meta-model for systems
with quantitative aspects: transitions P a,w−−→ Q are labelled with weights w, taken
from a given monoidal weight structure. Many computational aspects can be
captured just by changing the underlying weight structure: weights can model
probabilities, resource costs, stochastic rates, etc.; as such, WLTSs are a general-
isation of labelled transition systems (LTSs), probabilistic systems (PLTSs) [6],
stochastic systems [9], among others. Definitions and results developed in this
setting instantiate to existing models, thus recovering known results and discov-
ering new ones. In particular, the notion of weighted bisimulation [10] in WLTSs
coincides with strong bisimulation for all the aforementioned models.

In the wake of these encouraging results, other meta-models have been pro-
posed aiming to cover an even wider range of computational models and con-
cepts. Uniform labelled transition systems (ULTraSs) [2] are systems whose tran-
sitions have the form P

a−→ φ, where φ is a weight function assigning weights
to states; hence, ULTraSs can be seen both as a non-deterministic extension of
WLTSs and as a generalisation of Segala’s probabilistic systems [18] (NPLTSs).
In [14,15] a (coalgebraically derived) notion of bisimulation for ULTraSs is pre-
sented and shown to precisely capture bisimulations for weighted and Segala
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systems. Function-to-state transition systems (FuTSs) were introduced in [5] as
a generalisation of the above, of IMC [8], and other models. Later, [11] defines a
(coalgebraically derived) notion of bisimulation for FuTSs which instantiates to
known bisimulations for the aforementioned models.

Given all these meta-models, it is natural to wonder about their expressiveness.
We should consider not only the class of systems these frameworks can represent,
but also whether these representations are faithful with respect to the properties
we are interested in. Intuitively, a meta-model M is subsumed by M′ according to
a property P if any system S which is an instance of M with the property P , is
also an instance of M′ preserving P .

In this paper, we aim to classify meta-models according their ability to cor-
rectly express strong bisimulation. Therefore, in our contest a meta-model M is
subsumed by M′ if any system S which is an instance of M, is also an instance of
M′ preserving strong bisimulation.

FuTS

ULTraS

WLTSNPLTS

LTS PLTS. . . . . .

Previous work [2, 10, 11, 14, 15] have shown that,
according to this order, each of the meta-models men-
tioned above subsumes the previous ones, thus form-
ing the hierarchy shown aside. Still, an important
question is open: is any of these meta-models strictly
more expressive than others? In this work we address
this question, proving that this is not the case: the
black part of the hierarchy collapses!

In order to formally capture the notion of “expressiveness order between
system classes with respect to (strong) bisimulation”, we introduce the notion
of reduction between classes of systems. Although the driving motivation is
the study of the FuTSs hierarchy under the lens of bisimulation, the notion of
reduction is more general and, as defined in this work, can be used to study any
class of state-based transition systems. In fact, all the constructions and results
are developed abstracting from the “shape” of computation under scrutiny.
Synopsis Section 2 recalls an abstract and uniform account of transition systems
on discrete state spaces, akin to [17]. Section 3 presents a general construction for
extending equivalence relations over sets of states to sets of behaviours. Building
on this relational extension, Section 4 provides a characterisation of (strong)
bisimulations in a modular fashion. The notion of reduction is introduced in Sec-
tion 5, along with general reductions. In Section 6 we provide a reduction from
the category of FuTSs to the category of WLTSs together with intermediate re-
ductions for special cases of FuTSs such as ULTraSs, nested FuTSs, and combined
FUTSs. Final remarks are in Section 7 and omitted proofs in Appendix A.

2 Discrete transition systems

For an alphabet A and set of states X, the function space XA is understood
as the set of all possible behaviours characterising deterministic input over A.
In this context, a transition system exposing this computational behaviour is
precisely described by a function α : X → XA mapping each state x ∈ X to



90 Marino Miculan and Marco Peressotti

some element in XA. For a function f : X → Y and φ ∈ XA, the assignment
φ 7→ f ◦ φ defines a function (f)A : XA → Y A that extends the action of f from
state spaces X and Y to behaviours defined over them in a coherent way. A
function f : X → Y between the state spaces of systems (say, α : X → XA and
β : Y → Y A) preserves and reflect their structure whenever fA ◦α = β ◦ f . Since
they preserve and reflect the transition structure of systems, these functions are
called homomorphisms (which are functional bisimulations, cf. [17, Thm. 2.5]).

All the structures and observations described in the above example stem from
a single information: the “type” of the behaviour under scrutiny. This is well
understood as an endofunctor over the category of state spaces [17] — in this
context, the category of sets and functions.

Non-deterministic transitions are captured by the powerset endofunctor P
mapping each set X its powerset PX and function f to its inverse image Pf i.e.
the function given by the assignment Z 7→ {f(z) | z ∈ Z}. Since subsets are func-
tions weighting elements over the monoid B = ({tt, ff},∨, ff), the above readily
extends to quantitative aspects (such as probability distributions, stochastic rates,
delays, etc.) by simply considering other a non-trivial abelian monoids1 [10,12,15].
This yields the endofunctor FM which assigns
– to each set X the set {φ : X →M | |{x | φ(x) 6= 0}| ∈ N};
– to each function f : X → Y the map (FMf)(φ) = λy ∈ Y.

∑
x:f(x)=y φ(x).

(summation is well defined because φ is finitely supported, by above).
Probabilistic computations are a special case of the above where weight functions
are distributions (cf. [10]) and are captured by the endofunctor D given on each
set X as DX = {φ ∈ F[0,∞)X |

∑
φ(x) = 1} and on each function f as F[0,∞)f .

From this perspective, D can be thought as a sort of “subtype” of F[0,∞).
This situation is formalised by means of (component-wise) injective natural
transformations (herein injective transformations). Composition and products
of natural transformations are component-wise and the class of injective ones is
closed under such operations. In general, for an injective transformation µ and
a n endofunctor T , µT is again injective but Tµ may not be so. The latter is
injective given that T preserves injective maps i.e. Tf is injective whenever f is
injective. All the examples listed in this paper meet this mild assumption.

Lemma 1. Any composition and product of Id, P, FM preserve injections.

Example 1. The endofunctor PFM models the alternation of non-deterministic
steps with quantitative aspects captured by (M,+, 0). There is an injective
transformation η : Id→ P whose components are given by the mapping x 7→ {x}
and hence, by composition, ηFM

: FM → PFM is an injective transformation. ut

Definition 1. For an endofunctor T over Set, a transition system of type T (T -
system) is a pair (X,α) where X is the set of states ( carrier) and α : X → TX is
the transition map. For (X,α) and (Y, β) T -systems, a T -homomorphism from
the former to the latter is a function f : X → Y s.t. Tf ◦ α = f ◦ β.

1 An abelian monoid is a set M equipped with an associative and commutative binary
operation + and a unit 0 for +; such structure is called trivial when M is a singleton.
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Since system homomorphism composition is defined in terms of composition
of the underlying functions on carriers it is immediate to check that the operation
is associative and has identities. Therefore, any class of systems together with
their homomorphisms defines a category.

We adopt the following notational conventions. A transition system (X,α)
is referred by its transition map only; in this case its carrier is written car(α).
Homomorphisms are denoted by their underlying function. Categories of systems
are written using sans serif font with Sys(T ) being the category of all T -systems
and T -homomorphisms and C|T its subcategory of systems in the category C.

Example 2 (LTSs). For a set A of labels, labelled transition systems are (P−)A-
systems, and image finite LTSs (Pf−)A-systems [17]. Hereafter let LTS denote
the category of all image-finite labelled transition systems and let LTS(A) ,
Sys((Pf−)A) be its subcategory of systems labelled over A. ut

Example 3 (WLTSs). For a set of labels A and an abelian monoid M , weighted
labelled transition systems are characterised by the endofunctor (FM−)A [10] and
hence form the category WLTS(A,M) , Sys((FM−)A) i.e. the (A,M)-indexed
component of WLTS, the category of all WLTSs. When the monoid B of boolean
values under disjunction is considered, WLTS(A,B) is LTS(A). ut

Example 4 (ULTraSs). We adopt the presentation of ULTraSs given in [14, 15].
For a set of labels A and an abelian monoid M , uniform labelled transition
systems are characterised by the endofunctor (PFM−)A; image finite ULTraSs
by (PfFM−)A. We denote by ULTraS the category of all image-finite ULTraSs
and by ULTraS(A,M) its subcategory of systems with labels in A and weights
in M . WLTSs can be cast to ULTraSs by means of the injective transformation
(ηFM

)A described in Example 1. These ULTraSs are called in [2] functional. ut

Example 5 (FuTSs). FuTSs are T -systems for T generated by the grammar

T ::= (S−)A | T × (S−)A S ::= FM | FM ◦ S

where A and M range over (non-empty) sets of labels and (non-trivial) abelian
monoids, respectively. Any such endofunctor is equivalently described by:

(F ~Mf) ~A ,
∏n
i=0(F ~Mi

f)Ai and (F ~Mi
f)Ai , (FMi,0 . . .FMi,mi

f)Ai

for ~A = 〈A0, . . . , An〉 a sequence of non-empty sets, ~Mi = 〈Mi,0, . . . ,Mi,mi
〉 a

sequence of non-trivial abelian monoids, and ~M = 〈 ~M0, . . . , ~Mn〉 [12,15]. For any
~A and ~M as above define FuTS( ~A, ~M) as Sys((F ~M−) ~A). Clearly, FuTS(〈A〉, 〈M〉)
and FuTS(〈A〉, 〈B,M〉) coincide with WLTS(A,M) and ULTraS(A,M), respec-
tively. Then, LTS, WLTS, and ULTraS are subcategories of FuTS, the category of
all FuTSs. For ~M = 〈〈M0,0, . . . ,M0,m0〉, . . . , 〈Mn,0 . . .Mn,mn

〉〉 as above, recall
from [12] that a FuTS over ~M is called: nested if n = 0, combined if mi = 0 for
each i ∈ {0, . . . , n}, and simple if it is both combined and nested. ut
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3 Equivalence extensions

Several definitions of bisimulation found in literature use (more or less explicitly)
some sort of extension of equivalence relations from state spaces to behaviours
over these spaces. For instance, in [18] two probability distributions are considered
equivalent with respect to an equivalence relation R on their domain if they assign
the same probability to any equivalence class induced by R:

φ ≡R ψ
4⇐⇒ ∀C ∈ X/R

(∑
x∈C φ(x) =

∑
x∈C ψ(x)

)
.

This section defines equivalence extensions for arbitrary endofunctors (over Set)
and studies how constructs such as composition or products reflect on these
extensions, providing some degree of modularity.

Definition 2. For an equivalence relation R on X its T -extension is the equiv-
alence relation RT on TX such that φ RT ψ

4⇐⇒ (Tκ)(φ) = (Tκ)(ψ) where
κ : X → X/R is the canonical projection to the quotient induced by R.

As an example, let us consider the endofunctor (−)A describing deterministic
inputs on A: the resulting extension for an equivalence relation R relates functions
mapping the same inputs to states related by R. Formally:

φ R(−)A

ψ ⇐⇒ κ ◦ φ = κ ◦ ψ ⇐⇒ ∀a ∈ A (φ(a) R ψ(a)).

Extensions for P are precisely “subset closure” of relations (cf. [15]) and relate all
and only those subsets for which the given relation is a correspondence. Formally:

Y RP Z ⇐⇒ {κ(y) | y ∈ Y } = {κ(z) | z ∈ Z}
⇐⇒ (∀y ∈ Y ∃z ∈ Z(y R z)) ∧ (∀z ∈ Z∃y ∈ Y (y R z))

Extension for FM are generalise the subset closure to multisets and relate only
weight functions assigning the same cumulative weight to each equivalence class
induced by R: φ RFM ψ ⇐⇒ ∀C ∈ X/R

(∑
x∈C φ(x) =

∑
x∈C ψ(x)

)
In partic-

ular, RD is precisely Segala’s equivalence ≡R [18].
Consider extensions for the endofunctor (P−)A describing LTSs:

φ R(P−)A

ψ ⇐⇒ ∀a ∈ A
(

(∀y ∈ φ(a)∃z ∈ ψ(a) (y R z))∧
(∀z ∈ ψ(a)∃y ∈ φ(a) (y R z))

)
Clearly, RP(−)A can be equivalently written as

φ RP(−)A

ψ ⇐⇒ ∀a ∈ A(φ(a) RP ψ(a))

which suggests some degree of modularity in the definition of extensions to
composite endofunctors. In general, this kind of reformulations is not possible
since for arbitrary endofunctors T ans S, it holds only that φ

(
RS
)T

ψ =⇒
φ RT◦S ψ. The converse implication holds whenever T preserves injections.
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Lemma 2.
(
RS
)T ⊆ RT◦S and

(
RS
)T ⊇ RT◦S, given T preserves injections.

Endofunctors modelling inputs, such as (−)A and (Pf−)A, can be seen as
products (in these cases as powers) of endofunctors indexed over the input space
A. As suggested by the above examples, for product endofunctors it holds that:

φ R(
∏

Ti) ψ ⇐⇒ ∀i ∈ I(πi(φ) RTi πi(ψ))

where πi :
∏
TiX → TiX is the projection on the i-th component of the product.

Lemma 3. For I 6= ∅ and {Ti}i∈I , R
(∏

i∈I
Ti

)
∼=
∏
i∈I R

Ti .

FuTSs offer an instance of the above result: the endofunctor (F ~M−) ~A mod-
elling FuTSs over ~M = 〈 ~M0, . . . , ~Mn〉 and ~A = 〈A0; . . . ;An〉 is a product indexed
over {(i, a) | i ≤ n ∧ a ∈ Ai}. Thus, the extension R(F ~M−) ~A is described by:

φ R(F ~M−) ~A

ψ ⇐⇒ ∀i ≤ n∀a ∈ Ai(φi(a) RF ~Mi ψi(a)).

For an equivalence relation R define its restriction to X as the equivalence
relation R|X , R ∩ (X ×X). Both (R|X)T and RT |TX are equivalence relations
over the set of T -behaviours for X and, in general, the former is finer than the
latter, unless T preserves injections—in such case, the two coincide.

Lemma 4. For R and equivalence relation on Y and X ⊆ Y , (R|X)T ⊆ RT |TX ,
and, provided T preserves injections, (R|X)T ⊇ RT |TX .

Intuitively, this result allows us to encode multiple steps sharing the same
computational aspects as single steps at the expense of bigger state spaces. In
fact, it follows that (R|X)Tn+1 = RT |TnX , assuming T preserves injections.

Lemma 5. Let µ : T → S be an injective natural transformation. For R an
equivalence relation on X, φ RT ψ ⇐⇒ µX(φ) RS µX(ψ).

4 Bisimulations

In this section we give a general definition of bisimulation based on the notion
of equivalence relation extension introduced above. This approach is somehow
modular, as the definition reflects the structure of the endofunctors characterising
systems under scrutiny. This allows to extend results developed in Section 3 to
bisimulation and, in Section 5, to reductions.

Definition 3. An equivalence relation R is a strong T -bisimulation (herein,
bisimulation) for a T -system α iff x R x′ =⇒ α(x) RT α(x′). We denote by
bis(α) the set of all bisimulations for the system α.

The notion of bisimulations as per Definition 3 coincides with Aczel-Mendler’s
notion of precongruence [1].



94 Marino Miculan and Marco Peressotti

Definition 4. An equivalence relation R on X is a (Aczel-Mendler) precon-
gruence for α : X → TX iff, for any two functions f, f ′ : X → Y such that
x R x′ =⇒ f(x) = f ′(x′) it holds that x R x′ =⇒ (Tf ◦ α)(x) = (Tf ′ ◦ α)(x′).

Theorem 1. For α a T -system, every strong T -bisimulation for α is an AM-
precongruence and vice versa.

Bisimulations for systems considered in this paper are known to be kernel
bisimulations (cf. [10,12,15,17]) i.e. kernels of functions carrying homomorphisms
from systems under scrutiny [19]. These can be intuitively thought as defining
refinement systems over the equivalence classes they induce.

Definition 5. A relation R on X is a kernel bisimulation for α : X → TX iff
there is β : Y → TY and f : α→ β s.t. R is the kernel of the map underlying f .

In general, Definition 3 is stricter than Definition 5 but the two coincide for
endofunctors preserving (enough) injections—e.g. any example from this paper.

Corollary 1. For α : X → TX, the following are true:
– A bisimulation for α is a kernel bisimulation for α.
– If T preserves injections, a kernel bisimulation for α is a bisimulation for α.

From Corollary 1 and Lemma 1 it follows that Definition 3 captures strong
bisimulation for LTSs [16], for WLTSs [10], for Segala systems [18], for ULTraSs
[15], and for FuTSs [12], since these are all instances of kernel bisimulations.

Lemma 6. For T =
∏
i∈I Ti and α ∈ Sys(T ), bis(α) =

⋂
i∈I bis(πi ◦ α).

A special but well known instance of Lemma 6 is given by definitions of
bisimulations found in the literature for LTSs, WLTSs and in general FuTSs.
In fact, all these bisimulation contain a universal quantification over the set of
labels. For instance, a R is a bisimulation for an LTS α : X → (PX)A iff:

x R x′ =⇒ ∀a ∈ A
(

(∀y ∈ φ(a)∃z ∈ ψ(a) (y R z))∧
(∀z ∈ ψ(a)∃y ∈ φ(a) (y R z))

)
that is, iff R is the intersection of an A-indexed family composed by a bisimulation
for each transition system αa : X → PX projection of α on a ∈ A.

Lemma 7. For n ∈ N and α ∈ Sys(Tn+1), there is α ∈ Sys(T ) such that:
– R ∈ bis(α) =⇒ ∃R′ ∈ bis(α)(R = R′|car(α)),
– R ∈ bis(α) =⇒ R|car(α) ∈ bis(α).

Proof. Let X be
∐n
i=0 T

iX and α : X → T (X) be [Tιnα0, T ι0α1 . . . , T ιn−2αn−1]
where ιi : T iX → X is the i-th coproduct injection, α0 : X → T (TnX) is α, and
αi+1 : T i+1X → T (T iX) is given by the identity for T i+1X. If R ∈ bis(α), then:

x R|X x′ =⇒ x R x′
(i)=⇒ α(x) RT α(x′) (ii)⇐⇒ α(x) RT |Tn+1X α(x′)

(iii)⇐⇒ α(x) (R|X)T
n+1

α(x′)
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where (i) follows by R ∈ bis(α); (ii) follows by noting that α acts as α on X and
hence both α(x) = α(x) and α(y) = α(y) are elements of Tn+1X; (iii) follows
by inductively applying Lemmas 2 and 4. Therefore, R|X ∈ bis(α).

Assume R ∈ bis(α) and define R =
∐n
i=0 R

T i . By construction of R, x R x′

implies that x, x′ ∈ T iX for some i ∈ {0, . . . , n} meaning that the proof can be
carried out by cases on each RT i composing R. Assume x, x′ ∈ T 0X = X, then:

x R x′ ⇐⇒ x R x′
(i)=⇒ α(x) RT

n+1
α(x′) (ii)⇐⇒ α(x) (RT

n

)T α(x′)
⇐⇒ α(x) RT α(x′)

where (i) and (ii) follow by R ∈ bis(α) and Lemma 2, respectively. Assume
x, x′ ∈ T i+1X, we have that:

x R x′ ⇐⇒ x RT
i+1

x′
(i)⇐⇒ x (RT

i

)T x′ (ii)⇐⇒ α(x) (RT
i

)T α(x′)
⇐⇒ α(x) RT α(x′)

where (i) and (ii) follow by Lemma 2 and by definition of α on T i+1X. Therefore,
R ∈ bis(α) and clearly R|X = R. ut

Lemma 7 and its proof provide us with an encoding from systems whose steps
are composed by multiple substeps to systems of substeps while preserving and
reflecting their semantics in term of bisimulations. The trade-off of the encoding
is a bigger statespace due to the explicit account of intermediate steps.

Lemma 8. For µ : T → S injective and α ∈ Sys(T ), bis(α) = bis(µcar(α) ◦ α).

By applying the Lemma 8 to Example 1 we conclude that that bisimulations for
ULTraSs coincide with bisimulations for WLTSs when these are seen as functional
ULTraS as shown in [14,15].

5 Reductions

In this section we formalize the intuition that a behaviour “shape” is (at least)
as expressive as another whenever systems and homomorphisms of the latter can
be “encoded” as systems and homomorphisms of the former, provided that their
semantically relevant structures are preserved and reflected.

Definition 6. For systems α and β, a (system) reduction σ : α → β is given
by a function σc : car(α) → car(β) and a correspondence σb ⊆ bis(α) × bis(β)
s.t. σc carries a relation homomorphism for any pair of bisimulations in σb, i.e.:

R σb R′ =⇒ (x R x′ ⇐⇒ σc(x) R′ σc(x′)).

A system reduction σ : α→ β is called full if σc : car(α)→ car(β) is surjective.
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For σ : α→ β a reduction, σc is always injective: the identity relation is always
a bisimulation and hence condition (6) forces all x,x′ such that σc(x) = σc(x′) to
be equal in the beginning. Therefore the correspondence σb is always left-unique
hence a surjection from bis(β) to bis(α). This is indeed stronger than requiring
preservation of bisimilarity since it entails that any bisimulation for α can be
recovered by restricting some bisimulation for β to the image of car(α) in car(β)
through the map σc. Fullness implies σc and σb are isomorphism.

Remark 1. Condition (6) can be relaxed in two ways:
(a) R σb R′ =⇒ (x R x′ =⇒ σc(x) R′ σc(x′)),
(b) R σb R′ =⇒ (x R x′ ⇐= σc(x) R′ σc(x′)).
The condition (a) requires every bisimulation for α to be contained in some
bisimulation for β whereas (b) requires every bisimulation for α to contain some
bisimulation for β. Hence the two can be thought as completeness and soundness
conditions for the reduction σ, respectively. ut

System reductions can be extended to whole categories of systems provided
they respect the structure of homomorphisms. Formally:

Definition 7. For C and D categories of system, a reduction σ from C to D,
written σ : C→ D, is a mapping that
1. assigns to any transition system α in C a system σ(α) in D and a system

reduction σα : α→ σ(α);
2. assigns to any f : α → β in C an homomorphism σ(f) : σ(α) → σ(β) s.t.:

(a) σcβ ◦ f = σ(f) ◦ σcα; (b) σ(idα) = idσ(α); (c) σ(g ◦ f) = σ(g) ◦ σ(f).
A reduction σ : C → D is called full if, and only if, every system reduction σα
is full. A category C is said to reduce (resp. fully reduce) to D, if there is a
reduction (resp. full reduction) from the C to D.

Reductions can be easily composed at the level of their defining assignments.
In particular, for reductions σ : C→ D and τ : D→ E, their composite reduction
τ ◦ σ : C→ E is a mapping that assigns to each system α the system (τ ◦ σ)(α)
and the reduction given by (τ ◦σ)cα , τ cσ(α) ◦σ

c
α and (τ ◦σ)bα , τ bσ(α) ◦σ

b
α; and to

each f : α→ α′ the homorphism (τ ◦σ)(f). Reduction composition is associative
and admits identities which are given on every C as the identity assignments
for systems and homomorphisms. Any reduction restricts to a reduction from a
subcategory of its domain and extends to a reduction to a super-category of its
codomain. Moreover, fullness is preserved by the above operations.

For products, reductions can be given component-wise by suitable families of
reductions that are “well-behaved” on homomorphisms. Formally:

Definition 8. A family of reductions {σi : Ci → Di}i∈I is called coherent iff the
following conditions hold for any i, j ∈ I:
1. if a function f extends to fi ∈ Ci then there is fj ∈ Cj s.t. f extends to fj;
2. σi(fi) and σj(fj) share their underlying function whenever fi and fj do.

Theorem 2. A coherent family of (full) reductions {σi : Sys(Ti)→ Sys(Si)}i∈I
defines a (full) reduction σ : Sys(

∏
i∈I Ti)→ Sys(

∏
i∈I Si).
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Proof. Assume {σi}i∈I as above. For α ∈ Sys(
∏
Ti) let αi = πi ◦ α and define

σ(α) , 〈. . . , σi(αi), . . . 〉 σcα , σci,αi
σbα ,

⋂
i∈I σ

b
i,αi

The assignment extends to all systems in Sys(
∏
i∈I Ti) and is well-defined by

coherency and Lemma 6 since R σbα R
′ ⇐⇒ ∀i ∈ I(R σbi,αi

R′) and for all i ∈ I,
σcα = σci,αi

. For any i ∈ I, f : α → β defines an homomorphism fi : αi → βi in
Sys(Ti) sharing its underlying function. Define σ(f) as the homomorphism arising
from the function underlying σi(fi). By coherency, the mapping is well-defined
and satisfies all the necessary conditions since all σi are reductions. ut

Correspondences for bisimulations presented in Lemmas 7 and 8 extend to
reductions: injective transformations define full reductions and homogeneous
systems reduce to systems for the base endofunctor, as formalised below.

Theorem 3. For µ : T → S an injective transformation, there is a full reduction
µ̂ : Sys(T )→ Sys(S) given, on each α and each f : α→ β as µ̂(α) , µcar(α) ◦ α,
µ̂cα , idcar(α), µ̂bα , idbis(α), and µ̂(f) , f .

This theorem allows us to formalise the hierarchy shown in Section 1. For
instance, the transformation described in Example 1 defines a full reduction from
WLTSs to ULTraSs. Probabilistic systems are covered by the transformation
induced by the inclusion DX ⊆ F[0,∞)X whereas the remaining cases are trivial.

Theorem 4. If T preserves injections then Sys(Tn+1) reduces to Sys(T ).

Proof. Recall from Lemma 7 the construction of α : X → TX for any α : X →
Tn+1X and let ι0 : X → X denote the obvious injection. Define σ : Sys(Tn+1)→
Sys(T ) as the reduction given on each transition system α in Sys(Tn+1) as

σ(α) , α σcα , ι0 σbα , {(R,R) | R = R|X , R ∈ bis(α), R ∈ bis(α)}

and on each homomorphism f : α → β in Sys(Tn+1) as σ(f) ,
∐n
i=0 T

if . By
Lemma 7, σbα is a correspondence and by construction σ respects homomorphism
composition and identities. Thus, σ is a reduction from Sys(Tn+1) to Sys(T ). ut

6 Application: reducing FuTSs to WLTSs

In this section we apply the theory presented in the previous sections to prove
that (categories of) FuTSs reduce to (categories of) simple FuTSs, i.e. WLTSs.
The reduction is given in stages reflecting the endofunctors structure.

Definition 9. A monoid sequence ~M is called homogeneous if its elements are
the same. FuTSs on ~M are called homogeneous if ~M is homogeneous.

Lemma 9. The FuTSs category fully reduces to that of homogeneous FuTSs.



98 Marino Miculan and Marco Peressotti

Proof. For a sequence of monoids ~M = 〈M0, . . . ,Mn〉 let N denote the product
monoid

∏n
i=0 Mi. Let 0j denote the unit of Mj . For each i ∈ {0, . . . , n}, the

assignment x 7→ 〈00, . . . , 0i−1, x, 0i+1, . . . 0n〉 extends to an injective monoid
homomorphism mi : Mi → N . The assignment φ 7→ mi ◦ φ defines an injective
natural transformation FMi

→ FN which extends to an injective transformation
F ~M → F~N . We conclude by Theorems 2 and 3. ut

Lemma 10. The nested FuTSs category reduces to that of simple FuTSs.

Proof. By Lemma 9 and Theorems 2 and 4. ut

Lemma 11. The FuTSs category reduces to that of combined FuTSs.

Proof. By Theorem 2 and Lemma 10. ut

Lemma 12. The combined FuTSs category fully reduces to that of simple FuTSs.

Proof. For a sequences ~A = 〈A0, . . . , An〉 and ~M = 〈M0, . . . ,Mn〉 let B and N
denote the cartesian product

∏n
i=0 Ai and the product monoid

∏n
i=0 Mi, respec-

tively. The mapping 〈φ0, . . . , φn〉 7→ λ〈a0, . . . , an〉.λx.〈φ0(a0)(x), . . . , φn(an)(x)〉
extends to an injective natural transformation from (F ~M−) ~A =

∏n
i=0 (FMi−)Ai

to (FN−)B . We conclude by Theorem 3. ut

Theorem 5. The FuTSs category reduces to that of simple FuTSs i.e. WLTSs.

Proof. By Lemmas 11 and 12. ut

For instance, consider an ULTraS α : X → (PfFMX)A. By Lemma 9 it fully
reduces to a homogeneous nested FuTS (X,α′) for the sequences of labels and
monoids 〈A〉 and 〈〈B×M,B×M〉〉, respectively and such that:

α′(x)(a)(φ) ,
{
〈tt, 0〉 given ψ ∈ α(x)(a) s.t. φ(y) = 〈ψ(y), 0〉 for all y ∈ X
〈ff, 0〉 otherwise

By Lemma 10, α′ reduces to the WLTS (X + FB×MX,α′) with labels from A,
weights from B×M , and such that:

α′(y)(a)(y′) ,


y(y′) if y ∈ FB×MX and y′ ∈ X
α′(y)(a)(y′) if y ∈ X and y′ ∈ FB×MX
〈ff, 0〉 otherwise

As exemplified by the above reduction for ULTraSs, FuTSs can be reduced to
WLTSs by extending the original state space with weight functions and splitting
steps accordingly. From this perspective, weight functions are hidden states in
the original systems which the proposed reduction renders explicit. This obser-
vation highlights a trade-off between state and behaviour complexity of these
semantically equivalent meta-models.
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7 Conclusions

In this paper we have introduced a notion of reduction for categories of discrete
state transition systems, and some general results for deriving reductions from the
shape of computational aspects. As an application of this theory we have shown
that FuTSs reduce to WLTSs, thus collapsing the upper part of the hierarchy
in Section 1. Besides the classification interest, this result offers a solid bridge
for porting existing and new results from WLTSs to FuTSs. For instance, SOS
specifications formats presented in [10, 15] can cope now with FuTSs, and any
abstract GSOS for these systems admits a specification in the format presented
in [15]. Likewise, developing an HML style logic for bisimulation on WLTSs would
readily yield a logic capturing bisimulation on FuTSs.

It remains an open question whether the hierarchy can be further collapsed,
especially when other notion of reduction are considered. In fact, requiring a cor-
respondence between bisimulations for the original and reduced systems may be
too restrictive in some applications like bisimilarity-based verification techniques.
This suggests to investigate laxer notions of reductions, such as those indicated
in Remark 1. Another direction is to consider different behavioural equivalences,
like trace equivalence or weak bisimulation. We remark that, as shown in [3,4,7],
in order to deal with these and similar equivalences, endofunctors need to be
endowed with a monad (sub)structure; although WLTSs are covered in [3, 13],
an analogous account of FuTSs is still an open problem.
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A Omitted proofs

Proof of Lemma 1 For f injective, the assignments

ψ 7→ f ◦ ψ Z 7→ {f(z) | z ∈ Z} φ 7→ λy.
∑
x:f(x)=y φ(x)

describe injective functions. ut

Proof of Lemma 2 Let κS : SX → SX/RS be the canonical projection to the
quotient induced by the equivalence relation RS . Since, by definition, κS(ρ) =
κS(θ) implies (Sκ)(ρ) = (Sκ)(θ) there is a (unique) function qS : SX/RS →
S(X/R) such that Sκ = qS ◦ κS . From TSκ = TqS ◦ TκS and the definition of
RTS and

(
RS
)T , it follows that: φ

(
RS
)T

ψ =⇒ (TSκ)(φ) = (TSκ)(ψ) =⇒
φ RTS ψ proving first part of the thesis. Since ρ RS θ ⇐⇒ κS(ρ) = κS(θ)
we conclude that qS is an injection and, by hypothesis, TqS is an injection too.
Therefore:

φ RTS ψ =⇒ (TSκ)(φ) = (TSκ)(ψ) =⇒ (TκS)(φ) = (TκS)(ψ)

=⇒ φ
(
RS
)T

ψ

completing the proof. ut

Proof of Lemma 3 Write T for
∏
i∈I Ti and recall that

(∏
i∈I Ti

)
X is

∏
i∈I TiX.

Then:

φ RT ψ ⇐⇒ (
∏
Tiκ)(φ) = (

∏
Tiκ)(ψ) ⇐⇒

∏
(Tiκ)(φi) =

∏
(Tiκ)(ψi)

⇐⇒ φ
∏
RTi ψ

where κ : X → X/R is the canonical projection to the quotient induced by R
and πi :

∏
i∈I TiX → TiX is the i-th projection. ut

Proof of Lemma 4 Let κ : Y → Y/R and κ′ : X → X/R|X be the canonical projec-
tions induced by R and R|X , respectively. Since the latter is given by restriction
of the former to X ⊆ Y , there is a unique and injective map q : X/R|X → Y/R
such that κ = q ◦ κ. The first part of the thesis follows by:

φ (R|X)T ψ =⇒ (Tκ′)(φ) = (Tκ′)(ψ) =⇒ (Tκ)(φ) = (Tκ)(ψ)
=⇒ φ RT ψ since Tκ = Tq ◦ Tκ′.

On the other hand, by hypothesis on T , Tq is injective and hence

φ RT |TX ψ =⇒ (Tκ)(φ) = (Tκ)(ψ) =⇒ (Tκ′)(φ) = (Tκ′)(ψ)

=⇒ φ (R|X)T ψ ut
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Proof of Lemma 5 It holds that

φ RT ψ ⇐⇒ Tκ(φ) = Tκ(ψ) (i)⇐⇒ (µX ◦ Tκ)(φ) = (µX ◦ Tκ)(ψ)
(ii)⇐⇒ (Sκ ◦ µX)(φ) = (Sκ ◦ µX)(ψ) ⇐⇒ µX(φ) RS µX(ψ)

where (i) and (ii) follow by µX being injective and by µ being a natural trans-
formation, respectively. ut

Proof of Theorem 1 Assume R is a bisimulation for α : X → TX. For f, f ′ : X →
Y s.t. x R x′ =⇒ f(x) = f ′(x′) we have that:

x R x =⇒ α(x) RT α(x′) ⇐⇒ (Tκ ◦ α)(x) = (Tκ ◦ α)(x′)
(i)=⇒ (Tf ◦ α)(x) = (Tf ′ ◦ α)(x′)

where (i) follows by noting that, since κ : X → X/R is a canonical projection and
x R x′ =⇒ f(x) = f ′(x′), there is (a unique) q : X/R→ Y s.t. f = q ◦ κ = f ′.

Assume R is a precongruence for α, we have that:

x R x
(i)⇐⇒ κ(x) = κ(x′) (ii)=⇒ (Tκ ◦ α)(x) = (Tκ ◦ α)(x′)

(iii)⇐⇒ α(x) RT α(x′)

where (i) follows by definition of κ : X → X/R, (ii) by R being a precongruence,
and (iii) by definition of RT . ut

Proof of Corollary 1 By Theorem 1 and [19, Thm. 4.1]. ut

Proof of Lemma 6 By Theorem 2, α(x) RT α(x′) ⇐⇒ α(x)
(∏

i∈I R
Ti
)
α(x′)

and hence α(x) RT α(x′) ⇐⇒ ∀i ∈ I (πiα)(x) RTi (πiα)(x′). ut

Proof of Lemma 8 For a relation R, R ∈ bis(α) iff x R y =⇒ α(x) RT α(y)
and R ∈ bis(µX ◦ α) iff x R y =⇒ (µX ◦ α)(x) RS (µX ◦ α)(y). We conclude by
Lemma 5. ut

Proof of Theorem 3 By Lemma 8. ut
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Abstract. A locally connected spanning tree (LCST) T of a graph G
is a spanning tree of G such that for each node its neighborhood in T
induces a connected subgraph in G. The problem of determining whether
a graph contains an LCST or not has been proved to be NP-complete,
even if the graph is planar or chordal. The main result of this paper is
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the case when the input graph is an SC 2-tree (i.e. a maximal outerplanar
graph).
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1 Introduction

A locally connected spanning tree (LCST) T of a graph G is a spanning tree of
G such that for each node its neighborhood in T induces a connected subgraph
in G [3]. It is well known that an interconnection network can be modeled as a
graph and, in this context, the existence of such a spanning tree ensures, in case
of site failures, effective communication among operative sites as long as these
failures are isolated [14].

Cai proved in [4] that the problem of determining whether a graph contains
an LCST is NP-complete even when the input graph is restricted to be planar
or split (and, a fortiori, chordal). So, researchers have looked for special classes
of graphs for which the problem is polynomially solvable.
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In particular, in [4] the problem has been proven to admit a linear solution
on directed path graphs, a superclass of interval graphs; this result has been
first generalized to the superclass of strongly chordal graphs [7] and then further
extended to doubly chordal graphs [10]. Moreover, in [8] the authors present
a linear time algorithm to solve the problem on circular arc graphs, a natural
superclass of interval graphs. Finally, linear time algorithms for the LCST problem
on cographs and co-bipartite graphs are provided in [10]. For a visual summary
of the known results, see Figure 1.

 
































Fig. 1. The state of the art concerning the complexity of the LCST problem. The
problem is NP-complete on black classes and linearly solvable on grey classes. White
classes are studied in this paper, and for them a linear time algorithm is designed.

In this paper we consider the SC 3-trees (i.e. maximal planar chordal graphs)
- an interesting and naturally defined subclass of k-trees introduced in [9] - and
we prove that the problem of finding an LCST is linearly solvable when restricted
to them. We give an analogous result even for the case when the input graph is
an SC 2-tree (i.e. a maximal outerplanar graph).

The rest of this paper is organized as follows: Section 2 is devoted to recall
some known notions and to state some preliminary results that will be useful in
the successive two sections. Section 3 is devoted to give a linear time algorithm
for finding an LCST on an SC 2-tree; it is preliminary to Section 4, where the
idea provided in the previous section is generalized and refined in order to prove
that an LCST of an SC 3-tree can be found in linear time, if it exists. Finally,
Section 5 concludes the paper addressing some open problems.
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2 Preliminaries

In this section we recall some known notions, and state some preliminary lemmas
for SC k-trees that will be useful in the main part of this paper restricted to
k = 2, 3.

Definition 1. [9] Given a positive integer k, simple-clique k-trees (in short SC
k-trees) are recursively defined as follows:

– The complete graph with k + 1 nodes is an SC k-tree.
– An SC k-tree with n+ 1 nodes (n ≥ k + 1) can be constructed from an SC
k-tree with n nodes by adding a node adjacent to all nodes of a k-clique not
previously chosen in the existing SC k-tree, and only to these nodes. ut

In this paper we deal with the two classes of SC 2-trees and SC 3-trees. SC
2-trees coincide with maximal outerplanar graphs [9] while SC 3-trees coincide
with Apollonian networks [1], and are in fact equivalent to the intersection class
of chordal and maximal planar graphs [9]. Hence, these two classes represent
interesting subclasses of both chordal and planar graphs.

Definition 2. [5] Given a graph G = (V,E) and two non-adjacent nodes u and
v of V , a subset S ⊆ V \ {u, v} is an (u, v)-separator if the removal of S from
G separates u and v into distinct connected components.

Let S be an (u, v)-separator of G. S is a minimal (u, v)-separator if no proper
subset of S separates u from v. More generally, S is a minimal separator if it is
a minimal (u, v)-separator, for some pair (u, v) of non adjacent nodes.

Given a set of nodes V ′ ⊆ V of a graph G, we denote by G[V ′] the subgraph
induced in G by the nodes in V ′.

We now give some properties of a minimal separator of an SC k-tree. Due to
lack of space, the proofs are deferred to the Appendix.

Lemma 1. Let G be an SC k-tree, and S be a minimal separator in G, then the
graph G[V \ S] has exactly two connected components AS and BS and the two
graphs G[AS ∪ S] and G[BS ∪ S] are SC k-trees.

Proof. see Appendix. ut

From now on, fixed a minimal separator S, we will continue to call AS and
BS the two connected components of G \ S.

In the following lemma we recall some simple properties of SC k-trees that can
be proved by induction on the number of nodes in G and that have been stated
either in [12] or in [11] for the more general class of k-trees.

Lemma 2. Let G be an SC k-tree, then

(i) G has (k + 1)-cliques but no (k + 2)-cliques,
(ii) every minimal separator of G is a k-clique,



106 T. Calamoneri, M. Dell’Orefice and A. Monti

(iii) G is a chordal graph,
(iv) For each k-clique K in G there exists a node t such that K ∪ {t} induces a

(k + 1)-clique in G.
Lemma 3. Let G be an SC k-tree, then for any minimal separator S in G there
are two nodes a and b, such that S is an (a, b)-separator; moreover S ∪ {a} and
S ∪ {b} are (k + 1)-cliques in G.
Proof. see Appendix. ut

We now recall the following generalization of line graphs introduced in [6].
Definition 3. The k-line graph of a graph G, in short Lk(G), is defined as a
graph whose nodes are the k-cliques in G. Two distinct such nodes are adjacent
in the k-line graph if and only if they have k − 1 nodes in common in G.

In the following, for a node X in Lk(G), with a small abuse of notation, we will
denote by X also the set of nodes of G that are in the the k-clique corresponding
to X.
Lemma 4. Let G be an SC k-tree, then a k-clique S in G is a minimal separator
if and only if there exist two adjacent nodes X1 and X2 in Lk+1(G) such that
S = X1 ∩X2.
Proof. see Appendix. ut

The k-line graphs have been used to obtain the following characterization of
SC k-trees:
Theorem 1. [9] A k-tree G is an SC k-tree if and only if the (k+ 1)-line graph
Lk+1(G) of G is a tree.

An SC k-tree whose (k + 1)-line graph Lk+1(G) is a path is called k-path.
Since our algorithms exploit the (k+1)-line graph, we are interested to output

Lk+1(G) in linear time from an SC k-tree input graphG; this is possible, as shown
by the following result.
Lemma 5. Let G be an SC k-tree; then tree Lk+1(G) can be computed in linear
time.
Proof. see Appendix.

Given a graph G, and one of its spanning trees T , for each node v of G, NT (v)
represents the set of the nodes of G that are adjacent to v in T ; these nodes will
be called T -neighbors of v. The next lemma states a necessary condition that an
LCST of a SC k-tree satisfies. As we will see later, 3 states the sufficiency of this
condition for the case k = 3.
Lemma 6. Let G be an SC k-tree, k ≥ 2, S be one of its minimal separators
and T be an LCST in G. We have that:
(i) if T [S] contains an isolated node, then its T -neighbors completely lie either

in AS or in BS.
(ii) G[S] contains at least one edge of T .
Proof. see Appendix.
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3 An Algorithm to Determine an LCST of an SC 2-Tree

Cai [3] proved that a nontrivial graph contains an LCST if and only if it contains
a spanning 2-tree T such that T does not contain as induced subgraph a 3-sun.
The 3-sun graph is made of a central triangle, and three independent nodes, each
adjacent to both ends of a single edge of the triangle.

Corollary 1. An SC 2-tree G contains an LCST if and only if G does not
contain as induced subgraph a 3-sun.

From the characterization above, we deduce the structure of the subclass of
SC 2-trees admitting an LCST (i.e. 2-paths, in Lemma 7 and Corollary 2), and
from there we look for the actual edges of the existing LCST (Lemma 8).

Lemma 7. Let G be an SC 2-tree. Its 3-line graph L3(G) has nodes of degree 3
if and only if G contains a 3-sun as induced subgraph.

Proof. see Appendix.

Now, since an SC k-tree G is a k-path if and only if Lk+1(G) is a path, from
the above two results we have:

Corollary 2. An SC 2-tree G contains an LCST if and only if L3(G) is a path.

Now we give a characterization of LCSTs of 2-paths. This characterization
allows us to design an algorithm that finds an LCST of a 2-path in linear time.

Lemma 8. Let G be a 2-path, and T be one of its spanning trees. T is an LCST
if and only if, for each minimal separator S = {x, y} of G the edge xy is in T .

Proof. see Appendix.

From the above results it is easy to obtain a linear time algorithm that, given
an n node SC 2-tree G, return an LCST of G if it exists, returns ’no’ otherwise.

Algorithm FindLCSTinSC2trees
Input: an n node SC 2-tree G;
Output: an LCST of G if it exists, NO otherwise.
Compute tree L3(G);
if L3(G) is not a path then return no;
Let X1, X2, . . . Xn−2 be a linear order of the nodes of the path L3(G);
T ← ∅;
if L3(G) consists of a single node X1 then

insert in T any two edges of the 3-clique X1 and return T ;
for i = 1 to n− 3 do

add to T the edge in the minimal separator Xi ∩Xi+1;
Let Xj = {xj , yj , zj} for j ∈ {1, n− 2};
Let x1y1 be the edge in T for X1 ∩ X2 and xn−3yn−3 be the edge in T for
Xn−3 ∩Xn−2;
Add to T the two edges z1x1 and zn−2xn−2;
return T .
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Theorem 2. (Correctness and Complexity) Algorithm FindLCSTinSC2trees
determines an LCST of a given SC 2-tree if and only if it exists and runs in
linear time.

Proof. If L3(G) is not a path the algorithm, in agreement with Lemma 2, correctly
returns "no".

It remains to show that the tree T constructed by the algorithm visiting
the path L3(G) is an LCST of G. This easily follows noting that the algorithm
constructs the LCST T exploiting the characterization in Lemma 8 and selects
all edges induced by each minimal separator of G. Note that, after the selection
in T of the n− 2 minimal separators of G, it remains to connect to T the only
two nodes of degree 2, z1 and zn−2, that occur in G. The node z1 is connected in
T to a node of the minimal separator X1 ∩X2 while the node zn−2 is connected
in T to a node of of the minimal separator Xn−3 ∩Xn−2. It is easy to see that
the resulting spanning tree of G is an LCST.

For what concerns the time complexity, observe that L3(G) can be computed
in linear time (cf. Lemma 5) and the same asymptotic time is sufficient also to
traverse the n− 2 nodes of the path L3(G) to gather the edges of T . ut

4 An Algorithm to Determine an LCST of an SC 3-Tree

In the previous section, we have seen that it is easy to determine an LCST of an
SC 2-tree G, if it exists, exploiting its L3(G). Unfortunately, when we move to
SC 3-trees, things seem to be not so easy anymore. Nevertheless, we will show
that it is possible to determine an LCST of an SC 3-tree G, if it exists, exploiting
its L4(G), in linear time. This is the aim of this section. Lemmas 9 and 10 are
technical statements needed for the proof of Theorem 3, which gives a necessary
and sufficient condition for the existence of an LCST in an SC 3-tree.

In the following statement, the graph 2K2 is the disjoint union of two copies
of K2.

Lemma 9. Let G be an SC 3-tree and T be one of its spanning trees. If, for
each minimal separator S = {x, y, z} of G, one of the following is true:

(i) T contains exactly two edges of G[S]
(ii) T contains exactly one edge of G[S] (w.l.o.g. this edge is xy) and either

NT (z) ⊆ AS or NT (z) ⊆ BS

then, for each node X in L4(G) it holds T [X] 6= 2K2.

Proof. see Appendix.

Lemma 10. Let G be an SC 3-tree and T be one of its spanning trees. If, for
each minimal separator S = {x, y, z} of G, the following is true:

(ii) T contains exactly one edge of G[S] (w.l.o.g. this edge is xy) and either
NT (z) ⊆ AS or NT (z) ⊆ BS



A Locally Connected Spanning Tree is in P on Simple Clique 3-Trees 109

then G is a 3-path and T is an LCST.

Proof. see Appendix.

Theorem 3. Let G be an SC 3-tree, and T be one of its spanning trees. T is
an LCST if and only if, for each minimal separator S = {x, y, z}, one of the
following is true:

(i) T contains exactly two edges of G[S];
(ii) T contains exactly one edge of G[S] (w.l.o.g. this edge is xy) and either

NT (z) ⊆ AS or NT (z) ⊆ BS.

Proof. We prove the two implications separately.
(⇒) Let T be an LCST, and let us prove that either (i) or (ii) hold on S.
First, notice that from item (ii) of Lemma 2, G[S] is a 3-clique, so it cannot

contain three edges of T , otherwise a cycle would occur in T ; so, in view of
Lemma 6, G[S] contains either one or two edges of T . If it contains exactly two
edges of T , then (i) holds and we have done. If, on the contrary, G[S] contains
exactly one edge xy of T then, by Lemma 6, NT (z) has an empty intersection
either with AS or with BS , that is (ii) holds.

(⇐) Let us now assume that S satisfies either (i) or (ii), and let us prove that
T is an LCST. The proof proceeds by induction on the number n of nodes of G.
For n = 4 ( the basis of the induction) G is a 4-clique and each spanning tree of
G is an LCST and the claim is trivially true since no separator exists. Assume
now that G has n > 4 nodes and the claim is true for every SC 3-tree with less
than n nodes. If all the minimal separators of G satisfy (ii), by Lemma 10 we
have that G is a 3-path and T is an LCST.

It remains to consider the case in which there exists a separator S̃ of G that
satisfies (i). Consider graphs G1 = G[AS̃ ∪ S̃] and G2 = G[BS̃ ∪ S̃] and the
spanning trees T1 = T [AS̃ ∪ S̃] of G1 and T2 = T [BS̃ ∪ S̃] of G2. In view of
Lemma 1, graphs G1 and G2 are SC 3-trees and each separator of one of these
two graphs is in fact a separator of G hence, for each separator S of Gi, 1 ≤ i ≤ 2,
the tree Ti satisfies either (i) or (ii). By inductive hypothesis, it follows that T1
and T2 are LCSTs of G1 and G2, respectively. Moreover, we have

NT (u) =


NT1(u) if u ∈ AS̃

NT2(u) if u ∈ BS̃

NT1(u) ∪NT2(u) if u ∈ S̃

For each u not in S̃, we already know that its T -neighbors are connected in
G \ {u} (since T1 is an LCST of G1 and T2 in an LCSTs of G2); for each u in S̃,
its T -neighbors are partially in AS̃ (and they are connected in AS̃ ∪ S̃), partially
in AS̃ (and they are connected in BS̃ ∪ S̃), and partially in S̃ (through which all
the T -neighbors of u are connected since S̃ is a 3-clique in G). It follows that T
is an LCST of G. ut

The next three definitions aim to introduce the concept of partial solution
and their labels, which will be the crucial operating principle of the algorithm. A
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partial solution is simply a “piece" of LCST of a peripheral portion of the graph
in input, and those solutions are combined together at each iteration, if possible.

Definition 4. Let S = {x, y, z} be a minimal separator of an SC 3-tree G. Let
G′ be the graph obtained from G by substituting set BS with the single node {b}
connected to all the three nodes in S. A partial solution on AS ∪ S w.r.t. S,
HAS∪S, is a spanning forest of AS ∪ S such that there exists an LCST T of G′
such that HAs∪S = T [AS ∪ S].

In the following we will call simply H a partial solution when S and AS ∪ S
are clear from the context.

Theorem 3, characterizing LCSTs in SC 3-trees, suggests that partial solutions
fall in exactly three distinct categories, depending on how many edges of H are
induced in S, and depending on the presence or not of an isolated node in H.
The next definition formalizes this fact.

Definition 5. Let S = {x, y, z} be a minimal separator of an SC 3-tree G. Let
H be a partial solution on AS ∪ S w.r.t. S. We say that H has label:

– αx if yz is an edge of H and x is isolated in H;
– βx if xy and xz are both in H;
– γx if yz is an edge of H, xy and xz are not in H, and x is not isolated in
H.

Analogous definitions can be given for labels αy, βy and γy, and αz, βz and γz.

Definition 6. Let S be a minimal separator in G, and assume |AS | = 1. The
canonical partial solutions of G[AS ∪S] associated to label χv (with χ ∈ {α, β, γ}
and v ∈ S) are depicted below.

Fig. 2. The three canonical partial solutions. The three outer nodes are in S, while the
central node is in AS .

We are now ready to describe the algorithm that, given an SC 3-tree, de-
termines an LCST if it has one. We highlight that, in order not to overburden
the exposition, we focus on the decisional problem. It is not difficult, given the
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information gathered in the decisional version of the algorithm, to find the edges
of the LCST, as will be explained later.

From now on, we assume L4(G) to be rooted in a degree 1 node, R. For any
node X 6= R, we denote by f(X) its parent, that is the first node encountered on
the unique path from X to R; by X̄ we denote the set of nodes of L4(G) in the
subtree rooted at X. To not clutter the exposition we will sometimes denote with
X̄ also the corresponding set of nodes in G, that is {x ∈ V (G) : x ∈ Y and Y ∈
X̄}.

Since we established the equivalence between minimal separators of G and
edges of L4(G) (cf. Lemma 4), in the following we will identify a minimal sep-
arator S = X ∩ f(X) of G with the corresponding edge Xf(X) of L4(G);
moreover, we define the set of labels of edge Xf(X) as L(Xf(X)) = {χv :
∃ a partial solution on X w.r.t. X ∩ f(X) with label χv}.

The very high level idea of the algorithm consists in traversing L4(G) in
post-order; when visiting a node X, we compute the set L(Xf(X)) of labels
using the sets of labels of the children of X, Y1, ..., Yc, which have already been
computed. This is done with the aim of extending the partial solutions of Yi,
combining them in a partial solution of X. It is clear that G contains an LCST
if and only if L(Y R) 6= ∅, where Y is the only child of root R.

We now focus on the issue of assigning to an edge Xf(X) its set of labels
L(Xf(X)). First of all, notice that if X is a leaf, then the partial solutions of
X are exactly the nine canonical partial solutions, so in this case L(Xf(X))
contains all nine labels, that is L(Xf(X)) = {χv|χ ∈ {α, β, γ}, v ∈ X ∩ f(X)}.
Otherwise, assume for example that X has two children Y1, and Y2. By brute
force we test every pair of 2 labels, each one from the set L(Y1X)×L(Y2X), that
is the cartesian product of L(Y1X) and L(Y2X). We “decode” these labels in
the corresponding canonical partial solution, which we combine, together with a
subset of edges E′ of E(X), in a subgraph H of G[X ∪ Y1 ∪ Y2]. If this subgraph
is a partial solution of G[X ∪ Y1 ∪ Y2 ∪ f(X)] w.r.t. separator X ∩ f(X), then
we add the corresponding label to L(Xf(X)); the following algorithm does the
job, and its correctness is proved below.

Algorithm Compute-Labels
Input: An edge Xf(X) of L4(G);
Output: The set of labels L(Xf(X))

G′ ← G[X ∪ f(X) ∪
⋃c

i=1 Yi];
L(Xf(X))← ∅;
foreach (χ1

v1
, ..., χc

vc
) ∈ L(Y1X)× ...× L(YcX) do

Let Hi be the canonical part. sol. of G′[Yi] associated to χi
vi
, i = 1, ..., c;

foreach subset E′ ⊆ E(X) do
H ← (X ∪

⋃c
i=1 Yi, E

′ ∪
⋃c

i=1 E(Hi));
if H is a partial solution of G′[X ∪

⋃c
i=1 Yi] w.r.t. separator Xf(X)

then
Add to L(Xf(X)) the label corresponding to H;

return L(Xf(X)).
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Notice that, when c = 0, the cartesian product L(Y1X) × ... × L(YcX) is
by definition equal to the set containing the empty tuple {()}; so, when X is
a leaf, the external cycle is executed exactly once, the Hi’s do not exist, and
H = (X,E′) in every iteration of the inner cycle. Also, notice that when at least
one of the L(YiX)’s is empty, then L(Y1X)× ...×L(YcX) = ∅, so the outer cycle
is never executed, and the output L(Xf(X)) is the empty set.

Before proving the correctness of Algorithm Compute-Labels, we highlight
that its time complexity is constant, since the cardinality of L(Y1X)×...×L(YcX)
is always at most 93, there are a constant number of subsets of E(X), and the
“if” condition can be verified in constant time since G′ has size O(c) = O(1).
Notice that Compute-Labels may be substituted by a constant size look-up
table, if one is interested in the overall efficiency of the algorithm (see Figure 3
in Appendix).

The following lemma is needed in the proof of the correctness of algorithm
Compute-Labels. Since it is an immediate consequence of the definition of
partial solution, its proof is omitted.

Lemma 11. Let G be a SC 3-tree, Xf(X) be an edge of L4(G). Let G′ =
G[(V \X) ∪X]. Assume G has a LCST T such that T [X] is a partial solution
with label χv. Then, G′ has a LCST T ′ such that T ′[X] is the canonical partial
solution associated to label χv.

Lemma 12. After the execution of Algorithm Compute-Labels on inputXf(X),
L(Xf(X)) contains label χv, (χ ∈ {α, β, γ} and v ∈ X ∩ f(X)) if and only if
there exists a partial solution of G[X] having label χv.

Proof. see Appendix.

We are ready to give the pseudocode of the algorithm deciding whether an
SC 3-tree has an LCST or not.

Algorithm Decide-LCSTonSC3-trees
Input: An n node SC 3-tree G;
Output: yes if an LCST of G exists, no otherwise.

if n = 4 then return yes;
Compute L4(G);
Root L4(G) in a degree 1 node R;
Let Y be the only child of R;
foreach node X 6= R of L4(G) in postorder do

L(Xf(X))← Compute-Labels(Xf(X));
if L(Y R) 6= ∅ then return no;
else return yes.

Theorem 4. (Correctness and Complexity) Algorithm Decide-LCSTonSC3-
trees returns “yes” if and only if the SC 3-tree in input has an LCST, in linear
time.



A Locally Connected Spanning Tree is in P on Simple Clique 3-Trees 113

Proof. If n = 4, then obviously any spanning tree of G is locally connected, and
the algorithm returns "yes". Otherwise, by Lemma 12, we have that L(Y R) is
nonempty if and only if there exists a partial solution H of G[Y ] with respect to
the minimal separator Y R. It is easy to see that H can be extended to a LCST
of G adding a single edge.

Moreover, the algorithm is linear. Indeed, L4(G) can be computed in linear
time (cf. Lemma 5), and algorithm Compute-Labels is called O(n) times, and,
as already noted, has constant cost. ut

In this extended abstract there is no space to detail how to reconstruct an
LCST from the labels assigned in the algorithm, so here we will give only an
overview. We can traverse again L4(G), this time in a pre-order fashion; starting
from the edge incident to the root, we arbitrarily choose one label; this label
implies a certain canonical partial solution, so we add the corresponding edges to
the current LCST. At the general iteration, we proceed visiting the children of
the current node having already chosen a label of the separator corresponding to
the edge connecting it with its father; this label came up from precise labels on
the edges connecting this node to its children, so we are forced to choose exactly
those labels, and we add in the LCST the corresponding edges of G.

5 Conclusions and Open Problems

We have proved that the problem of finding an LCST is linearly solvable on
the classes of SC 3-trees; an analogous result holds for the case when the input
graph is an SC 2-tree. Even supported by the results in [2], we conjecture that
the LCST problem remains linear for every class of SC k-trees, for any k; this
result may be achieved by giving a generalization of Theorem 3 to the class of
SC k-trees, k > 3. This generalization requires to:

– extend Theorem 3, becoming: Let G be a SC k-tree, and T be a spanning
tree of G. T is locally connected if and only if for every minimal separator S
of G, and for every x ∈ S:

NT (x) ∩ S = ∅ ⇒ NT (x) ⊆ AS or NT (x) ⊆ BS;
– increase the number of labels and specify their description;
– generalize Algorithm Compute-Labels.

A minor modification of this algorithm would allow the enumeration of all
LCSTs of an SC k-tree, still running in polynomial time, for any fixed k. Indeed,
the algorithm would have polynomial delay and the number of LCSTs in an SC
k-tree is upper bounded by nf(k), where f is the number of possible labels (f
is exponential in k or worse). This follows from the fact that an SC k-tree has
at most n minimal separators, and that an LCST can behave in at most f(k)
different ways on a minimal separator.

Moreover, we highlight that the result by Cai characterizes the SC 2-trees not
admitting an LCST by means of a forbidden configuration, i.e. the 3-sun graph.
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For what concerns the SC 3-trees, we know that some of them do not admit an
LCST (for example the one whose L4(G) has one node of degree 4 and three
of the adjacent nodes have degree 4; all the other nodes are leaves); we wonder
whether, also in this case, it is possible to characterize them by means of certain
forbidden configurations.
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Appendix

Proof of Lemma 1.

Proof. Proceed by induction on the number n of nodes in G = (V,E). If n = k+1,
then G is a (k + 1)-clique and the claim is trivially true because no separator
exists. Assume now that the claim is true for each SC k-tree with less than
n > k+ 1 nodes and let G be an SC k-tree with n nodes. In view of the recursive
definition of the SC k-trees, there is a node t in G and a k-clique K such that
G′ = G[V \ {t}] is an SC k-tree with n− 1 nodes and K is the set of neighbors
of t in G. Note that the separators of G are all the separators of G′ plus the
separator K. Let S be a separator of G. Two cases can arise.

– S is the k-clique K. In this case let AS = V \ (S ∪ {t}) and BS = {t} and
the claim follows since G[AS ∪ S] is the SC k-tree G′ and G[BS ∪ S] is the
SC- k tree given by the k-clique K.

– S is also a separator in G′. By the inductive hypothesis there exist two sets
A′S and B′S satisfying the claim in G′. Note that it cannot be both A′S∩K 6= ∅
and B′S ∩K 6= ∅ (otherwise S would not be a separator). W.l.o.g. assume
B′S ∩K = ∅ and consider AS = A′S ∪ {t} and BS = B′S . Note that AS is a
connected component in G (since A′S is a connected component in G′ and t
is connected to at least a node in A′S). Moreover G[AS ∪ S] is the SC k-tree
obtained connecting the node t to the k-clique K in the SC k-tree G′[A′S ∪S]
and G[BS ∪ S] is the SC k-tree G′[B′S ∪ S]. ut

Proof of Lemma 3.

Proof. Proceed by induction on the number n of nodes in G. If n = k + 1, then
G is a (k + 1)-clique and the claim is trivially true because no separator exists.
Assume now that the claim is true for each SC k-tree with less than n nodes and
let G be an SC k-tree with n nodes. In view of the recursive definition of the SC
k-trees, there is a node a in G and a k-clique K such that G′ = G−{a} is an SC
k-tree with n− 1 nodes and K is the set of neighbors of a in G. Note that K is a
(a, b)-minimal separator for G where b is a node in G′ connected to all the nodes
in K (the existence of such a node is ensured by item (iv) of Lemma 2). Thus
the separator K of G satisfies the claim. Moreover all the others separators in G
are also separators in G′ thus the claim follows by inductive hypothesis. ut

Proof of Lemma 4.

Proof. We prove the two implications separately.
(⇒ ) Since S is a minimal separator in G, by Lemma 3 there are in G two

nodes a and b such that S is an (a, b)-separator and S ∪ {a} and S ∪ {b} are
k + 1-cliques in G. Let X1 and X2 be the two nodes in Lk+1(G) corresponding
to the k+ 1-cliques S ∪{a} and to S ∪{b} respectively. By definition of Lk+1(G),
these nodes are adjacent and the claim follows.
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(⇐ ) We will show that the k-clique S = X1 ∩X2 in G is a minimal (a, b)-
separator where a = X1 \ S and b = X2 \ S.

Suppose, by contradiction, that a and b are connected in the subgraph G′

induced by the nodes V \ S. Note that a and b not are adjacent in G (otherwise
we have in G a (k + 2)-clique induced by nodes of X1 ∪X2 against item (i) in
Lemma 2) and let P =< a, t1, . . . ti, b >, with i ≥ 1, be a shortest path from a to
b in G′. We will prove that each node of P must be connected to all the nodes in
the set S, so leading to a contradiction since set {t1} ∪X1 forms a (k+ 2)-clique
in G.

To prove that each node ti in P must be adjacent to all the nodes in the set
S, let us assume, by contradiction that there is a node tj in P and a node u in
S such that ti and u are not adjacent. Let t be the first node adjacent to u we
meet along the path P from tj to a and let t′ be the first node adjacent to u we
meet along the path P from ti to b. Now consider in G the cycle consisting of
the nodes in P from t to t′ and the node u. This cycle contains at least 4 nodes
(i.e. t, tj , t′ and u) and is cordless (since P is a minimal path from a to b). Thus
we have a contradiction in view of item (iii) in Lemma 2. ut

Proof of Lemma 5.

Proof. A perfect elimination ordering (peo) of G is an order v1, v2 . . . vn of its
nodes such that the set Pred(vi) , 1 ≤ i ≤ n, of the nodes that are adjacent to
vi in G and that precede vi in the order, form a clique.
Rose and al. in [13] developed a method based on Lexicographic Breadth First
Search (lex-BFS that produces a peo for chordal graphs (and obviously for SC
k-trees) in linear time. Moreover in [12] Rose proved that the peo produced with
this method for k-tree (and obviously for SC k-trees) has the property that the
first k + 1 nodes in the order form a k + 1-clique and |Pred(vi)| = k for each
vi, k + 1 < i <≤ n. Once produced a peo v1, v2 . . . vn with these properties
it is easy to construct in linear time the tree Lk+1(G). We start with a node
X1 containing the nodes x1, x2, . . . xk+1. Moreover we obtain the other nodes
of Lk+1(G) starting from the nodes vi, k + 1 < i ≤ n. More precisely for vi

we create a node Xi containing the nodes {vi} ∪ Pred(vj), where vj is the last
predecessor of vi, and we connect this new node Xi to the node Xj if j > k + 1,
to X1 otherwise. It is easy to see that each of the n−k nodes of the resulting tree
is a k+ 1-clique and that, for each edge XiXj of the tree ,it holds |Xi ∩Xj | = k
(i.e. the tree is the the graph Lk+1(G)). ut

Proof of Lemma 6.

Proof. Let x be an isolated node in T [S]. By contradiction, assume that NT (x)
has a non empty intersection both with AS and with BS . Let a and b be the
T -neighbors of x such that a ∈ AS and b ∈ BS ; since T is an LCST, a and b
must be connected in G by either an edge or a path not passing through any
other node of S, and this is a contradiction since S is a separator.
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In order to prove the second assertion, assume by contradiction that subgraph
G[S] does not contain any edge of T . By the first assertion, each node in S has
its T -neighbors either all in AS or all in BS . But in this case, for each node
a ∈ A and b ∈ B it cannot exists a path in T connecting a to b. Thus T is not a
spanning tree. ut

Proof of Lemma 7.

Proof. If G contains a 3-sun, then there are three 3-cliques all having an edge
in common with the same (central) 3-clique, hence L3(G) has a node of degree
at least 3. Vice-versa let X = {x, y, z} be a node of degree 3 in L3(G). Let
Y1 = {x, y, a}, Y2 = {x, z, b} and Y3 = {y, z, c} be the three neighbors of X, then
the six nodes {x, y, z, a, b, c} induce a 3-sun in G. ut

Proof of Lemma 8.

Proof. We prove the two implications separately.
(⇒ ) If T is an LCST, the claim immediately follows from property (ii) in

Lemma 6.
(⇐ ) Proceed by induction on the number n of nodes in G. If n = 3 the

claim trivially holds, because no separator exists. If n > 3 there exists at least a
separator S = {x, y}. In view of Lemma 1 and by definition of k-paths, G[AS∪S]
and G[BS ∪ S] are 2-paths and hence they satisfy the inductive hypothesis,
implying that T [AS ∪ S] and T [BS ∪ S] are LCSTs. Merging together T [AS ∪ S]
and T [BS ∪S] we get a tree T that is a LCST because edge xy belongs to T . ut

Proof of Lemma 9.

Proof. Suppose, by contradiction, that there exists a 4-clique X = {x, y, z, t} in
G = (V,E) such that T [X] = 2K2. This implies that, for each minimal separator
S ⊂ X of G, it holds (ii). Let S = {x, y, z} be any of these separators and
let z be the isolated node in T [S]. Without loss of generality let BS be the
component of G[V \ S] containing NT (z). In graph T [AS ∪ S] node z is hence
isolated. The above reasoning applies to any other separator in X. Thus the path
in T connecting the two edges of the 2K2 must be in X and this contradicts the
assumption that T [X] = 2K2. ut

Proof of Lemma 10.

Proof. First we show that G is a 3-path. By contradiction assume that tree L4(G)
is not a path. Let X = {x, y, z, t} be a node of L4(G) with three neighbors Y1, Y2
and Y3. Consider now the three minimal separators Si = X ∩ Yi, 1 ≤ i ≤ 3
(cf. Lemma 4). In order to fix the ideas let t ∈ X be the node in

⋂
i Yi and

S1 = {x, y, t}, S2 = {x, z, t} and S3 = {z, y, t}. In each graph T [Si], 1 ≤ i ≤ 3,
there is a single isolated node, if this node is t for all the three graphs, then xy,
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xz and yz are in T . Thus the set {x, y, z} is a cycle in T , a contradiction. Hence
there is a minimal separator Si,1 ≤ i ≤ 3, such that t is not isolated in T [Si],
w.l.o.g. let it be S1 and let xt ∈ E(T ). This implies that y is the only isolated
node in T [S1], z is the only isolated node in T [S2] and the edges xy, ty, xz and tz
are not in T . This in turn implies that yz is the only edge in T [S3]. Summarizing,
we have that the edges xt and yz form a 2K in the 4-clique X, a contradiction
to Lemma 9.

Now we show that T is an LCST. We proceed by induction on the number
n of nodes in the 3-path G = (V,E). If n = 4, then G is a 4-clique and the
claim is trivially true because any spanning tree of a 4-clique is locally connected.
Assume now that the claim is true for every 3-path with less than n > 4 nodes
and let G be a 3-path with n nodes. Let t be the last node added to G in its
recursive definition and consider the separator S = {x, y, z} identified by the
neighbors of t in G. Observe that G′ = G[V \ {t}] is a 3-path with n− 1 nodes
since L4(G′) can be obtained by L4(G) by cutting the leaf containing t. Moreover,
for all the separators of G′ (note that these separators are also separators of G)
T ′ = T [V \ {t}] satisfies (ii) in G′. Since T satisfies (ii) for the separator S in
G, t cannot be adjacent in T to both x and y (otherwise a cycle is introduced in
a tree), so the degree of t in T is at most 2. We will examine the two cases.

1. |NT (t)| = 1: T ′ is a spanning tree for G′ and, by inductive hypothesis, it is
an LCST of G′. Moreover, since T is connected it must be either xt ∈ T or
yt ∈ T (remember that S satisfies (ii)). W.l.o.g. assume that xt ∈ T . For
each u ∈ V , it holds

NT (u) =

{x} if u = t
NT ′(x) ∪ {t} if u = x
NT ′(u) otherwise

Now, using the fact that T ′ is an LNCS forG′ and that yt ∈ E and y ∈ NT ′(x),
it is easy to see that T is an LCST for G.

2. |NT (t)| = 2: Without loss of generality assume that NT (t) = {x, z}. Note
that NT (z) = {t} since S satisfies (ii) in T . Let a be a node in G connected to
all nodes in S (such a node there exists by Lemma 3). Since G is a 3-path, any
induced 4-clique (in particular, K = {a, x, y, z}) contains at most 2 minimal
separators, so besides {x, y, z}, at most one among {x, y, a}, {x, z, a} and
{y, z, a} is a minimal separator contained in K. There are three cases to
consider.
(a) S is the only minimal separator in K. In this case G has only five nodes

(the nodes {a, x, y, z, t}). The node a in T can be connected only to x or
to y.
In the first case (where ax is in T ), we have NT (x) = {y, t, a} and
NT (t) = {x, z}. Moreover x and t are the only nodes in T having degree
greater than one. Thus we conclude that T is an LCST by noting that
ay, yt and xz are edges of G.
In the second case ( where ay is in T ), x, t and y are the only nodes in T
having degree greater then one and NT (x) = {y, t}, NT (t) = {x, z} and
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NT (y) = {x, a}. Thus again T is an LCST by noting that yt, xz and xa
are edges of G.

(b) S′ = {a, x, y} is a minimal separator in K. AS′ contains only t and z
and T ′ = T [BS′ ∪S′] is a spanning tree in G′ = G[BS′ ∪S′] that satisfies
(ii) on every minimal separator, hence -by inductive hypothesis - G′ is a
3-path and T ′ is an LCST. Summarizing, for each u ∈ V , it holds

NT (u) =


{z, x} if u = t
{t} if u = z
NT ′(x) ∪ {t} if u = x
NT ′(u) otherwise

Now, using that T ′ is an LCST of G′, zx ∈ E, y ∈ NT ′(x) and yt ∈ E,
it is easy to see that T is a LCST of G.

(c) S′ is a minimal separator in K and either S′ = {a, y, z} or S′ = {a, x, z}.
Assume first that S′ = {a, y, z}. Note that T ′ obtained by adding edge
xz to T [V \ {t}] is a spanning tree of G′ = G[V \ {t}] and it satisfies (ii).
Thus, by inductive hypothesis, T ′ is an LCST of G′. Note that S′ satisfies
(ii) on T and since NT (z) = {t} it must be ay ∈ E(T ). Summarizing, for
each u ∈ V , it holds

NT (u) =


{z, x} if u = t
{t} if u = z
{y, t} if u = x
NT ′(u) otherwise

Now, using that T ′ is an LCST of G′, and zx and yt are edges of G, it
is easy to see that T is an LCST of G.
The reasoning is similar if we assume that the minimal separator S′ is
{a, x, z}. In this case we can consider the spanning tree T ′ of G′ obtained
by adding the edge yz to T [V \ {t}].

ut

Proof of Lemma 12.

Proof. (⇒) If X is a leaf, that is c = 0, then the canonical partial solution on
G[X] = G[X] corresponding to label χv satisfies the statement.

Else, assuming 1 ≤ c ≤ 3, let E′ be the selected subset of E(X) such that H
is a partial solution of G′[X ∪

⋃c
i=1 Yi] w.r.t. separator Xf(X), for which label

χv was added to L(Xf(X)). By structural induction, there are partial solutions
Hi of G[Y i], having label χi

vi
, i = 1, ..., c. By Lemma 11, if (X,E′ ∪

⋃c
i=1 E(Hi))

was not a partial solution of G[X], then neither would H be a partial solution
of G′[X ∪

⋃c
i=1 Yi], a contradiction. Finally, notice that G[X] has the same label

of H, that is χv.
(⇐) If X is a leaf, then G[X] = G[X] admits all nine possible canonical

partial solutions. Since c = 0, the outer cycle is executed exactly once on the
empty tuple (), and the inner cycle will find a partial solution for each possible
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label. Assume now that 1 ≤ c ≤ 3. Assume there exists a partial solution H
of G[X] with respect to separator Xf(X). Then, notice that H[Y i] is a partial
solution of G[Y i] with respect to separator YiX with label χi

vi
, so by structural

induction L(YiX) contains label χi
vi
, i = 1, ..., c. Let Hi be the canonical partial

solution of G[Yi] with respect to separator YiX. Then, by Lemma 11, H =
(X ∪

⋃c
i=1 Yi, E

′ ∪
⋃c

i=1 E(Hi)) is a partial solution of G′[X ∪
⋃c

i=1 Yi] with
respect to separator Xf(X), where E′ = E(H[X]) is found by brute force by
the inner cycle, and the corresponding label (that is the same as H) is added to
L(Xf(X)). ut
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Table used in Algorithm Decide-LCSTonSC3-trees
label of {x, y, t} label of {x, z, t} label of {y, z, t} label of {x, y, z}

αx - - αx(+yz), βz(+xz, yz), γy(+zt, xz)
αy - - αy(+xz), βz(+xz, yz), γx(+yz)
αt - - βx(+xz, zt), βy(+yz, zt)
βx - - αz, βx(+xz), βy(+yz), γz(+tz)
βy - - αz, βx(+xz), βy(+yz), γz(+tz)
βt - - γy(+xz), γx(+yz)
γx - - γy(+xz), γx(+yx)
γy - - γy(+xz), γx(+yz),
γt - - αz, βx(+xz), βy(+yz)
αx αt - βz(+yz)
αx βz - γy

αt αx - βy(+yz)
αt βz - βx

αt γt - βx

βx αz - αz, βy(+yz)
βx γz - γz

βx βx - βx

βx βt - γz

βy αx - γz

βy αt - βx

βt αz - γx(+yz)
βt βx - γy

γy βx - γy

γt αt - βx

αx αt βy βz

αx βz βt γy

αt αx βz βy

αt βz αy βx

βx αz αt βy

βx βt αy γz

βy αx βt γz

βy αt αz βx

βt αz βy γx

βt βx αz γy

Fig. 3. Table for the construction of the labels. Symbol ’-’ means that the corresponding
child is not present in L4. Notice that missing combinations do not lead to any feasible
label for separator {x, y, z}.
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Abstract. In this paper, we consider the problem of gathering mobile
agents in a graph in the presence of mobile faults that can appear any-
where in the graph. Faults are modeled as a malicious mobile agent that
attempts to block the path of the honest agents and prevents them from
gathering. The problem has been previously studied by a subset of the
authors for asynchronous agents in the ring and in the grid graphs. Here,
we consider synchronous agents and we present new algorithms for the un-
oriented ring graphs that solve strictly more cases than the ones solvable
with asynchronous agents. We also show that previously known solutions
for asynchronous agents in the oriented ring can be improved when agents
are synchronous. We finally provide a proof-of-concept implementation
of the synchronous algorithms using real Lego Mindstorms EV3 robots.

1 Introduction

An important problem in the area of distributed computing with mobile agents
(or robots) is the rendezvous problem, i.e., the gathering of all agents at the same
location. Gathering is a crucial task for teams of autonomous mobile robots, since
they may need to meet in order to share information or coordinate. This problem
has been widely studied when the environment is modelled as an undirected
graph and the mobile agents can move along the edges of the graph. Most of the
studies are restricted to fault-free environments and very little is known about
gathering in the presence of faults. Possible faults can be a permanent failure
of a node, like for example the so called black hole that destroys agents arriving
at a node, or, transient faults that can appear anywhere in the graph, such as a
mobile hostile entity (an intruder) that behaves maliciously. Some work has been
done to locate a malicious node in a graph (see, e.g., [8,10]), whereas protecting
the network against a malicious entity that is mobile and moves from node to
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poses.
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node of the graph, is a more difficult problem. An example of this kind is the
so-called network decontamination or intruder capture problem (see, e.g., [9,11]).

In this paper we consider a new type of malicious agent that was introduced
in [5]. This agent can block the movement of an honest agent to the node it
occupies, it can move arbitrarily fast along the edges of the graph, it has full
information about the graph and the location of the agents, and it even has full
knowledge of the actions that will be taken by the honest agents. On the other
hand, the honest agents are relatively weak: they are independent and identical
anonymous processes with some internal memory, they move synchronously and
use face to face communication when they are in the same node. We investigate
the feasibility of rendezvous in oriented and unoriented ring networks in the
presence of such a powerful adversary, that blocks other agents from having
access to parts of the network.

We consider an oriented and an unoriented ring network modelled as a con-
nected undirected graph with a set of mobile honest agents located at distinct
nodes of the graph, and a malicious agent that cannot harm the honest agents but
can prevent them from visiting a node. As in [5] we are interested in solving the
rendezvous of all honest agents in this hostile environment. However, differently
from [5], we consider synchronous mobile honest agents. These agents have local
communication capability, and no prior knowledge of their number k (except for
the protocol for k = 2) and of the ring size n. Our objective is to study the
feasibility of rendezvous with minimal assumptions.

Contributions. (i) We prove that in an unoriented ring network of n nodes the
problem is not solvable for n odd and k even, and we then present an algorithm
that solves the problem in all the other cases for k > 2 synchronous agents,
also in the case n odd and k odd which is unsolvable with asynchronous agents;
(ii) we briefly discuss how to solve the problem for k = 2 agents and n even,
not solvable in the asynchronous setting, and how to solve the problem in the
oriented ring by improving the known algorithm for asynchronous agents; (iii)
we show that the proposed algorithms and underlying assumptions are realistic
through a proof-of-concept implementation using Lego Mindstorms EV3 robots.

Related work. In this paper we consider the rendezvous problem, which has
been previously studied for robots moving on the plane [3], or for agents moving on
graphs [1]. This problem can be easily solved, in synchronous and asynchronous
settings, when the system is not symmetric, e.g., when there is a distinguished
node. In symmetric settings (e.g., in the anonymous ring) the problem is non-
trivial and symmetry has to be broken, e.g., by using tokens [6], by adding distinct
identifiers to agents [4], etc.

Some recent work [7] also considers the problem of rendezvous in the presence
of Byzantine agents, which are indistinguishable from the honest agents, but may
behave in an arbitrary manner, and may also provide false information to the
honest agents so to prevent their gathering. Other related work includes gathering
in networks with delay faults [2]. The model used in [2] is somehow similar to ours
in the sense that the adversary may delay for an arbitrary, but finite time, the



124 Authors Suppressed Due to Excessive Length

movements of the agents. However, contrary to the model of [2], in our setting,
one of the agents may be blocked forever.

From a practical point of view, the work that is more closely related to our
model is [13], where the author proposes an example of a simulation of a known
distributed fault-free gathering algorithm, using real NXT robots. Differently
from our setting, in [13] robots are moving on a plane (not in a graph), do not
use direct communication, but only indirect one, i.e., can only detect the position
and the movement of the other robots but cannot communicate any information.

Paper structure. The paper is organized as follows: In Section 2 we illustrate
the formal model; in Section 3 we first present some impossibility results, and
then the algorithm for the unoriented ring network for k > 2 agents. For lack of
space we only discuss the solution for k = 2 and for the oriented ring network.
In Section 4 we present the implementation of the algorithms on programmable
robots, and we discuss the usefulness of the study of the real model in the
development of the theoretical models. We conclude in Section 5.

2 A Model of Synchronous Agents in a Ring

We consider a distributed network modeled by an undirected, connected graph
G = (V, E) where V are the anonymous and identical nodes or hosts, and E the
edges or connections between nodes. We assume that in the network there are k
honest anonymous identical synchronous agents A1, A2, . . . Ak, and one malicious
agent M which is trying to prevent the gathering of honest agents. More precisely,
the network, and the capabilities and behavior of honest and malicious agents
are the following.

The network: We consider either oriented or unoriented ring networks R =
(V, E), with |V | = n nodes. The links incident to a host are distinctly labeled. In
the oriented ring, the links are labelled consistently to allow all agents agree on
a common sense of direction. In the unoriented ring there is no such agreement
and the labels on the links are arbitrary. The edges of the network are FIFO
links, meaning that all agents, including the malicious one, that move in the
same link respect a FIFO ordering. We call a node v occupied when one or more
honest agents are in v, and we call v free or unoccupied otherwise. Moreover, for
solvability reasons, we will have to assume that the ring contains a special node
marked ⊗, otherwise gathering is impossible (see [5]).

Honest agents: The agents are independent and identical, anonymous processes
with some internal constant memory, except for the case k = 2 in the unoriented
ring that requires O(log n) bits. These agents are initially scattered in the graph,
i.e., at most one agent at a node, start the protocol at the same time, and can
move along the edges of G. An agent located at a node v can see how many other
agents are at v, and it can access their states. An agent cannot see or communicate
with any agent that is not located at the same node, i.e., communication is face
to face. Moreover an agent cannot mark the node or leave any information on the
node that it visits. An agent arriving at a node v, learns the label of the incoming
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port and the label of the outgoing port. Two agents traveling on the same edge
in different directions do not notice each other, and cannot meet on the edge.
Their goal is to rendezvous at a node. The agents neither have knowledge of the
size n of the ring, nor of the number k of agents present in the network.

The moves of honest agents are synchronized as follows: (a) all agents start
executing the protocols at the same time; (b) time is discretized into atomic time
units; (c) all agents start in the same initial state, and the set of agent states is
finite and independent of the graph size or the number of agents; (d) During each
time unit, an agent arriving at a node v through a port q takes the following three
actions: (d.1) it reads its own state, counts the number of agents at v and reads
their states; (d.2) based on the above information it performs some computation
to decide its next destination; the output of the computation is a new state and
the port number p of an edge incident to v, or p = 0 if the agent decides to stay
in v; (d.3) the agent changes its state and either moves using the computed port
number (p > 0), or waits at the current node (p = 0). If the agent decided to
move on edge (v, z), and the node z is not occupied by the malicious agent then
the agent is located at the node z in the next time unit. Otherwise, the agent
is still located at node v in the next time unit, with a flag set in its memory
notifying the agent that the move was unsuccessful. In the next time unit, the
agent repeats the above three actions.

Malicious agent: We consider a worst case scenario in which the malicious
agent M is a very powerful entity compared to honest agents: It has unlimited
memory; at any time has full knowledge of the graph, the locations of the honest
agents and their states, and the algorithm followed by the agents. Based on the
above information, M can either stay at its current node y or decide to move to
another node w, if there is a path from y to w, such that no node on this path,
including w, is occupied by any honest agent. The speed of the malicious agent
is unbounded, thus M can move arbitrarily fast inside the network, but must
move along the edges of the graph, and it also obeys the FIFO property of the
links. When it resides at a node u it prevents any honest agent A from visiting u,
i.e., it “blocks" A: If an agent A attempts to visit u, the agent receives a signal
that M is in u. M can neither visit a node which is already occupied by some
honest agent, nor cross some honest agent in a link.

3 Rendezvous in Rings with Synchronous Agents

In this section we first study the rendezvous problem with synchronous agents
having constant memory, in an unoriented ring with one malicious agent. In [5]
the authors have analyzed the same problem with asynchronous agents and have
proved that the problem is solvable in any unoriented ring if and only if the
number of honest agents k is odd. We prove here that with k > 2 synchronous
agents having constant memory, the problem can be solved in an unoriented ring
consisting of n nodes, when n is even or k is odd. We also prove that for k even
and n odd numbers, the problem is unsolvable. We discuss also the case k = 2
in unoriented rings, and the problem in oriented rings.
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Let us first show the impossibility result in the unoriented ring. The technique
of the proof is similar to the one presented in Lemma 5 of [5], where it was
proved that an even number of agents with constant memory cannot gather in
an unoriented ring with a malicious agent. We can show that when n is odd
and k is even, an adversary can initially place the agents in a configuration that
is symmetric with respect to a line passing through the special node ⊗, and
can place itself in ⊗. Hence, the agents are distributed into two groups of equal
size. Moreover, the agents belonging to the same group, agree on the clockwise
(CW ) orientation but they do not agree with the agents of the other group. In
other words, what is considered clockwise direction for any agent of one group is
considered counter-clockwise direction for every agent of the other group. Each
two symmetrically placed agents which belong to different groups should behave
identically under any algorithm. Moreover, recall that n− 1, the number of free
positions is even, i.e., there is no meeting point in the middle opposite to ⊗, and
therefore the agents of the two groups can never meet at a node. We thus have:

Lemma 1 (Impossibility when n is odd and k is even). In an unoriented
ring with a specially marked node ⊗ and a malicious agent having arbitrary speed,
k ≥ 2 mobile synchronous agents starting from arbitrary symmetric locations,
cannot gather at a node if n is odd and k is even.

3.1 Unoriented Ring with more than two Agents

We now propose an algorithm for k > 2 synchronous agents with constant memory,
and that do not know n and k. Moreover, agents do not agree on a common sense
of direction given that the ring is unoriented. Algorithm 1, called CollectAgents,
works as follows. Each agent has a state and some local variables that keep track
of the execution. Agents wake up in state INITIAL. We illustrate the algorithm
distinguishing the case in which all agents have the same orientation, from the
case in which the agents are split in two groups, those that move in one direction
and those that move in the opposite direction. Note that the agents are not aware
of this information so they cannot adapt their behaviour accordingly.

If an agent continues moving in the same direction and eventually reaches ⊗
for the second time, then the agent can be sure that all agents are moving in the
same direction. In this case, one of the agents - the first agent to reach ⊗ twice
- will stop at ⊗. The other agents continue moving in the same direction until
they are blocked by M . The first agent to be blocked stops (in state STOPPED)
and all other agents gather at this node, except one of the agents (the first one
to meet the STOPPED agent) which changes to state MSG (“messenger") and
goes around the ring in the other direction until it is blocked by M . At this point
M is surrounded by the stopped agent (now in state HEAD) and the messenger
agent. The messenger agent (changing to state R_MSG) returns back, collecting
the STAR agent on the way, and rendezvous is achieved when these two agents
reach the other agents who are waiting at the HEAD agent.

When the agents do not have the same orientation then the situation is
different. In this case there are two groups of agents, G1 and G2, moving in
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opposite directions. One agent from each group will eventually be blocked by
M and become the “leader" (HEAD) agent for their group. The two groups of
agents will start gathering in two distinct locations. To bring the two groups
together, we use the fact that either k is odd or n is even. In the former case,
one of the groups is of odd size, and agents of this group turn back and go to
the other group. Otherwise if k is even and both groups are of even size, then
the leader (HEAD) agents of the two groups try to push M from two sides until
M is cornered in one node of the network. The segment of the ring containing
the other nodes is of odd size and the two groups of agents can meet at the
center of this segment. Let agent A for G1, and agent B for G2, be the agents
that are blocked by M and become STOPPED (line 6). When two other agents,
say C and D, meet A and B respectively then A and B will become HEAD and
will start moving, trying to surround M , while C and D become MSG, reverse
direction and move towards B and A, respectively. When agents C and D meet
the two HEAD agents B and A (line 67), they reverse direction and become
R_MSG delivering some information and joining all the agents of their own
group. If either G1 or G2 is of odd size and all the agents of the odd group move
towards even group (line 23), and rendezvous is achieved. If k is even, and both
G1 and G2 are of even size, then agents C and D go back and forth, until when
they find that M has been surrounded, i.e., when HEAD agents cannot move
anymore (line 24). At this point G1 and G2 move towards the middle point and
gather there if n is even or the algorithm fails if n is odd (line 38).
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Algorithm 1 CollectAgents
# Gathering k > 2 agents in an Unoriented Ring.
# Local variables: sync = parity = s_reached = 0, moved = -1, first_clock = 1,
State = INITIAL

1: sync := (sync + 1) mod 2

2: if State = INITIAL then
3: dir := CW
4: if first_clock = 1 and Reached ⊗ then s_reached = s_reached +1
5: end if
6: if Blocked then State := STOPPED
7: else
8: Move to the next node
9: if Reached ⊗ then s_reached = s_reached +1
10: end if
11: if meet a STOPPED agent then State := MSG
12: else if meet a HEAD agent h then State := FOLLOWER of h
13: else if Blocked then State := STOPPED
14: else if s_reached = 2 and not found a STAR agent then
15: State := STAR
16: end if
17: end if

18: else if State = HEAD then
19: if meet a INITIAL agent then parity:= (parity + 1) mod 2
20: else if meet a R_MSG agent r then
21: if r.moved = -1 then State := RENDEZVOUS
22: else if parity = 1 and r.parity = 0 then State := WAIT
23: else if parity = 0 and r.parity = 1 then State := R_HEAD
24: else if moved = 0 and r.moved = 0 then
25: State := R_HEAD
26: Wait (sync)
27: end if
28: moved:= 0
29: else if not blocked and s_reached < 2 then
30: moved:= 1
31: Move to the next node
32: if Reached ⊗ then s_reached = s_reached +1
33: end if
34: else Wait (1)
35: end if

36: else if State = R_HEAD then
37: dir := CCW
38: if Blocked then State := FAILURE
39: else if meet a R_HEAD agent then State := RENDEZVOUS
40: else
41: Move to the next node
42: if meet a R_HEAD or WAIT agent then State := RENDEZVOUS
43: end if
44: end if
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CollectAgents algorithm - Continue
45: else if State = STOPPED then
46: if meet a INITIAL agent then
47: State := HEAD
48: moved:= 0
49: parity:= (parity + 1) mod 2
50: else if meet a MSG agent m then State := FOLLOWER of m
51: else Wait (1)
52: end if

53: else if State = STAR then
54: if meet a R_MSG agent r then State := FOLLOWER of r
55: else Wait (1)
56: end if

57: else if State = FOLLOWER then
58: if leader state is RENDEZVOUS then State := RENDEZVOUS
59: else follow the leader
60: end if

61: else if State = MSG then
62: dir := CCW
63: if Blocked then
64: State := R_MSG
65: else
66: Move to the next node
67: if meet a HEAD agent h then
68: state := R_MSG
69: moved:= h.moved
70: parity:= h.parity
71: else if Blocked or meet a STOPPED agent then state := R_MSG
72: end if
73: end if

74: else if State = R_MSG then
75: dir := CW
76: Move to the next node
77: if meet a HEAD agent h then
78: if moved = -1 then State := RENDEZVOUS
79: else if (parity!= h.parity) or (moved = 0 and h.moved = 0) then
80: State := FOLLOWER
81: else State := MSG
82: end if
83: end if

84: else if State = WAIT then
85: if meet a R_HEAD agent then
86: State := RENDEZVOUS
87: Change state of FOLLOWER agents to RENDEZVOUS
88: else Wait (1)
89: end if
90: end if
91: first_clock:= 0
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Theorem 1. Algorithm CollectAgents solves the rendezvous problem for k > 2
agents in an unoriented ring of size n with a special node ⊗, and with one
malicious agent M . It returns a failure message when n is odd, k is even and
there are at least two agents for each of the two possible orientations.

Proof. All the agents start moving at the same time in their CW direction,
but there is no common sense of direction thus some agents could move in one
direction while some others are moving in the opposite one. We have three
possible cases: (1 ) all the agents move in the same direction; (2 ) all the agents
except one move in the same direction; (3 ) at least two agents move in one
direction and at least two move in the opposite one.

(1 ) We want to prove that in this case exactly one agent becomes STOPPED.
Let us first assume by contradiction that no agent becomes STOPPED. There
are two cases: a) Either M stops or moves in a direction opposite to the other
agents, but in this case it blocks one agent that becomes STOPPED, thus a
contradiction; b) or M keeps on moving in the same direction chosen by the
agents, but in this case one agent will cross ⊗ twice and will stop, thus blocking
M . Therefore, at least another agent will eventually be blocked by M (no other
agent stops at ⊗), and will become STOPPED, thus a contradiction also in
this case. Let us now prove that the STOPPED agent is unique. Given that
by hypothesis there are k > 2 agents that move in the same direction, and at
most one agent becomes STAR, then one agent C has to meet A, the STOPPED
one, becomes MSG, while A changes its state to HEAD. Note that, all the other
agents in state INITIAL cannot become STOPPED, but become FOLLOWER,
given that they meet A before being blocked by M . The agents A and C move in
opposite directions. C reaches M in the opposite side because there are no other
STOPPED or HEAD agents, given that C is the first agent that moves in this
direction. Thus, the STOPPED agent is A and is unique. Let us now prove that
C will coordinate the gathering. When C comes back in state R_MSG has the
default moved value equal to −1. Agent A in the opposite side continues to move
in the same direction, with some agents in state FOLLOWER. However, the two
agents C and A eventually meet, in fact either A is stopped by M , or after it has
reached ⊗ for the second time, it will remain stopped, together with the agents
in state FOLLOWER, waiting for the arrival of C to rendezvous. Note that, if
one agent had previously stopped in ⊗, then it has to be in the path followed
by R_MSG, thus it will become a FOLLOWER of R_MSG and will rendezvous
with the other agents. Thus, if all agents initially move in the same direction
rendezvous is achieved.

(2 ) Let us assume that all the agents except one, called B, move in the same
direction. The agent M cannot escape both from B and from the agents going in
the opposite direction, let us call this group G1, thus M has to block both B and
another agent A of G1. B becomes STOPPED but not HEAD because no other
agent can reach it in state INITIAL, whereas A, becomes STOPPED, and once
it is reached by an INITIAL agent C, A becomes HEAD, and C starts moving in
the opposite direction, i.e. towards B, in state MSG. All the remaining agents of
G1 become FOLLOWER of A. When C and B meet, B becomes a FOLLOWER
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of C, and C moves in state R_MSG towards A with the default moved value
equal to −1. The agent A and its FOLLOWER agents continue to move in CW
direction, however A is either blocked by M , or it stops after reaching ⊗ twice.
When C and B reach A, all the other possible agents already reached A, and
since moved = −1 the agents terminate in state RENDEZVOUS .

(3 ) At least two agents have an orientation in one direction, and another
two in the other direction. Thus, exactly 2 agents become HEAD and 2 agents
become MSG. Let us call them A and C - the HEAD and the MSG on one side,
and B and D, those on the other side, respectively. All the other agents become
FOLLOWER of the HEAD they meet. C and D perform a tour in opposite
directions: they reverses direction, reach B and A, respectively, and come back
to A and B in state R_MSG, delivering the moved and the parity information
related to the other HEAD agent.
We now have to show that the two groups of agents are able to meet. First
observe that since agents are synchronous and links are FIFO D (C) meets A
(B) in state MSG before that C (D) comes back in state R_MSG delivering
the information on the parity or oddness (computed using the parity bit) of the
opposite group of agents, and the information on the possible movement of the
opposite HEAD, stored in a variable moved. Note that, when M is surrounded,
A and B are not able to move. We have two cases:

- k is odd: If k is odd, the HEAD agent of a group with parity = 1, remains
stopped in state WAIT , whereas the other HEAD agent, with parity = 0, starts
moving in opposite direction in state R_HEAD with all the other agents of its
group in state FOLLOWER. This group of agents will reach the other stopped
group -regardless of the value n- and all agents will rendezvous.

- k is even: This case is more complicated and rendezvous can be achieved
only when M has been surrounded, i.e., when A and B cannot move anymore.
This is possible since even if M is very fast, due to the synchronicity of the agents,
M can block only A or B in one time step. Note also that none of the HEAD
agents can meet ⊗ twice since M is surrounded before either of them could visit
all the nodes of the ring.
Thus, we have now to prove that C and D perform a same number of turns and
they eventually meet, together with their FOLLOWER agents. Given that C
and D collect both the moved value of their HEAD and the one of the opposite
HEAD agent, if at least one of the moved values is not 0 (which means at least
one of the HEAD agents moved) they start a new round, otherwise they try to
rendezvous. Observe that collecting both values and having FIFO links implies
a synchronization of the rounds.
Let G1 and G2 be the two groups of agents surrounding M that will eventually
be formed at the node of A and of B respectively. The sync variable changes at
each clock (line 1), and is used to synchronize the movements. In case n is even,
A and B are separated by an odd number of nodes. If one HEAD agent changes
direction at an even clock tick and the other at an odd clock tick (defined by the
sync variable), only one of the groups waits one clock cycle (line 26), and so the
two groups move at an instant of time that preserves the odd distance and thus,
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they rendezvous. Without this synchronization, the agents may cross on an edge
without meeting.
Conversely, if n is odd A and B do not meet along the path and are blocked again
by M , thus they move to the state FAILURE since they did not rendezvous. ut

The complexity of the algorithm is as follows.

Theorem 2. Algorithm CollectAgents in an unoriented ring of size n requires
constant memory and it converges in O(n) time steps and with O(kn) total moves.

Strategy for M . We now very briefly illustrate the best strategy for the malicious
agent M , in order to delay as much as possible the gathering of the honest agents.
Thus, we will be considering time constraints. If k− 1 agents have the same CW
orientation, M moves CW up to when it is blocked by an agent and stops. If
all k agents have the same orientation, M moves in that direction up to when it
is blocked by an agent, then it waits until the agent moves (as it has become a
FOLLOWER of an R_MSG), and M follows the agent until it is blocked again
and stops. This happens after a HEAD has crossed twice the node ⊗ and has
become STOPPED. Finally, if agents are split in two groups, and k is odd, M
moves in the direction of the group of even size; if k is even M alternatively
blocks HEAD agents from one or the other side, so that both HEAD agents start
a round as soon as possible with the effect of maximizing the number of rounds.
Let us call this algorithm BlockAgents for M .

Lemma 2. Algorithm BlockAgents provides the best strategy for the malicious
agent to delay as much as possible the gathering of the honest agents.

Results for the oriented rings, and for the case k = 2 in unoriented
rings. For lack of space, we just very shortly illustrate two new cases, more details
may be found in [12]. Let us first consider the case of the oriented ring. First note
that there are no unsolvable cases, given that the symmetric configurations of
Lemma 1 never arise when agents move in the same direction. One solution for
k ≥ 2 would be to apply Algorithm 1 of [5] which might require that the agents
reverse direction three times when they are blocked by M . Moreover agents will
terminate but do not know when there is global termination. Another solution
for k ≥ 3 would be to apply Algorithm CollectAgents in the case in which all the
agents move in the same direction. This solution could even be improved: After
an agent has become HEAD it just stops and waits, since if all the agents move
in the same direction, then HEAD will not need to surround M . We have devised
another simpler algorithm that requires less rounds, assures global termination,
works for k ≥ 2 agents, and uses only constant memory. The general idea is
as follows: Suppose all the agents start moving in the CW direction, then the
first agent that is blocked by M , let us call it A, becomes the leader and starts
moving in the CCW direction. Then, when A meets an agent that is moving in
the CW direction, let us call it B, B stops, while A continues to move until it is
blocked again by M . Then, A reverses direction and moves back. The rendezvous
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is achieved at the node of B. Note that, also in this case, an agent that arrives in
⊗ stops to block M . Finally, to assure that when A moves in the CCW direction
it meets any other agent, e.g. B, that is moving in the CW direction, we assume
that A waits at the even clock ticks and moves at the odd clock ticks, while B
moves at the even clock ticks and wait at the odd clock ticks.

Let us now consider the case k = 2 in the unoriented ring. Note that, in the
unoriented ring with asynchronous agents the problem is unsolvable for any even
number k ≥ 2, of honest agents, even if the agents know k [5]. With synchronous
agents we have the following. For n odd Lemma 1 proves that the problem is
not solvable, for n even we now briefly discuss a solution that requires O(log n)
bits of memory, and assumes that the agents know that k = 2. The algorithm
works as follows. It uses the general idea of the Controlled Distance algorithm
in a ring [14]. The agents move back and forth for a certain distance x which
increases at each round, in particular we choose x = 2i, for i = 0, 1, 2, . . .. At
each round i both agents, that we call A and B, try to move for x steps in the
CW direction, i.e., for x cycles of clock either they move, or they wait if they
are blocked by M . Then, they move back in the CCW direction for x steps, or
they wait if they are blocked by M in the opposite direction. During this walk
if they meet each other they gather. Note that, if they have waited some time
moving CW , then they might go back passing the starting position. It is possible
to prove that eventually the two agents will either meet at some intermediate
node, or they will eventually surround M and, since they are synchronized, and
they start moving in CCW direction at the same time step, they will meet at the
middle node, opposite to M in the ring. To prevent agents to infinitely increase
value x when they start in the same direction, an agent stops when it reaches ⊗
twice so that the other agent will meet it at the node ⊗.

4 Implementation

In this section we illustrate a proof-of-concept implementation based on the Lego
Mindstorms EV3 platform,4 which is widely adopted in robotic courses.

We have represented each undirected edge of the ring as two parallel links, so
that robots moving in two opposite directions on the same edge do not collide.
The nodes are all identical, and they have been represented as circles that can be
traversed by the agents moving around the border. The special node is labeled
with a yellow marker. The honest robots are all identical, whereas the malicious
agent has been physically modified to be easily noticeable.

To built our robots we have used standard Lego EV3 components. We have
used the EV3 Color Sensor to detect the lines representing the edges of the
graph so to let the robots move along them. We have used the EV3 Infrared
Seeking Sensor and EV3 Ultrasonic Sensor to detect the other honest agents in
the same node, and to avoid collisions when robots are following each other. By
4 Lego mindstorms ev3, 2016. http://www.lego.com/en-us/mindstorms/products/

31313-mindstorms-ev3

http://www.lego.com/en-us/mindstorms/products/31313-mindstorms-ev3
http://www.lego.com/en-us/mindstorms/products/31313-mindstorms-ev3
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rotating the sensors on top of the EV3 Servo Motors we are also able to detect
robots placed crosswise.

Face to face communication is implemented using the built-in Bluetooth
adapters. However, given the small physical dimension of the ring we could not
use the Received Signal Strength Indicator (RSSI) of the Bluetooth devices to
connect to the robots in the same node, since all devices were showing very
similar signal strengths. We have then used a centralized server that mediates
connections and only enables face to face communication in the same node. We
claim that on a bigger network the strength indicator would work more reliably
and local communication might be implemented without resorting to a centralized
server.

The software platform used for the implementation is ev3dev,5 an open-source
Linux-based operating system fully compatible with Lego Mindstorm robots.
EV3 hardware can be controlled from a wide range of common programming
languages providing bindings for the ev3dev device API. We decided to implement
our algorithms in Python3 since it offers high code readability and enables rapid
prototyping of applications. The source code written to evaluate the protocols
consists of around 600 lines and is publicly available at our github repository
page,6 together with some exemplifying videos.7

5 Conclusions

In this paper we have presented the problem of gathering a set of mobile agents
in presence of mobile transient faults, represented by a mobile malicious agent.
We have studied the problem in oriented and unoriented ring networks, and we
have shown that the proposed solutions are realistic by giving a proof-of-concept
implementation of the algorithms with real Lego Mindstorms EV3 robots. We
are presently studying the problem of gathering in an unoriented ring with k = 2
agents and constant memory, and the gathering of synchronous agents in other
topologies.
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Abstract. The distributed setting of computational mobile entities,
called robots, that have to perform tasks without global coordination
has been extensively studied in the literature. A well-known scenario
is that in which robots operate in Look-Compute-Move (LCM) cycles.
LCM cycles might be subject to different temporal constraints dictated
by the considered schedule. The classic models for the activation and
synchronization of mobile robots are the well-known fully-synchronous,
semi-synchronous, and asynchronous models.
In this paper, we concentrate on the weakest asynchronous model, and
propose improved and general protocols to solve tasks when the robots
are endowed with lights, i.e. they are luminous.

1 Introduction

The distributed setting of computational mobile robots that have to perform tasks
without global coordination has been extensively studied in the literature. A well-
known scenario is that in which robots operate in Look-Compute-Move (LCM)
cycles (see [1,2,11,12] and references therein). During each cycle, a robot acquires
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a snapshot of the surrounding environment (Look phase), then executes an appro-
priate algorithm by using the obtained snapshot as input (Compute phase), and
finally moves toward a desired destination, if any (Move phase). Look-Compute-
Move cycles might be subject to different temporal constraints dictated by the
considered schedule. The classic models for the activation and synchronization of
mobile robots are the well-known fully-synchronous (fsync), semi-synchronous
(ssync), and asynchronous (async) models (see, e.g., [3,5,8]).

– Fully-synchronous (fsync): The activation phase (i.e. the execution of
an LCM cycle) of all robots can be logically divided into global rounds. In
each round all the robots are activated, obtain the same snapshot of the
environment, compute and perform their move. Notice that, this assumption
is computationally equivalent to a fully synchronized system in which robots
are activated simultaneously and all operations happen instantaneously.

– Semi-synchronous (ssync): It coincides with the fsync model, with
the only difference that not all robots are necessarily activated in each round.

– Asynchronous (async): The robots are activated independently, and the
duration of each Compute, Move and inactivity phase is finite but unpre-
dictable. As a result, robots do not have a common notion of time. Moreover,
they can be seen while moving, and computations can be made based on
obsolete information about positions.

Recently, a new model has been introduced by Das et al. in [4], extending
the classic ones. In detail, given a modelM ∈ {fsync, ssync, async}, the
authors define modelMc, where each robot operating inM is equipped with a
light that is visible to itself and to the other robots during the Look phase. The
light associated with a robot can generate c different colors (for some constant
integer c > 0), and can be updated by a robot during its Compute phase. The
light is assumed to be persistent, i.e. despite robots can be oblivious, their lights
are not automatically reset at the end of a LCM-cycle. Light-enhanced robots,
introduced for the first time in [9,13], are usually referred as luminous robots
(see, e.g., [10]). Note that, depending on the considered scenario, a robot might
have visibility of the lights of either all other robots or just of a subset of them.

A first comprehensive evaluation of the computational power of robots oper-
ating in the LCM model and moving within the Euclidean plane, under different
levels of synchronization, has been proposed in [4]. In detail, the authors provide
a series of results that prove relations between classic models and variations of
them, including the possibility that robots are luminous.

In [6] a characterization of the computational power of robots moving on
graphs has been proposed. In particular, the authors first show relations among
the three classic activation and synchronization models; second, they compare
the models where robots are endowed with lights against the models without
lights; third, they highlight the relations among the different models concerning
luminous robots; finally, they provide a detailed comparison of the proposed
results with the case of robots moving in the Euclidean plane.
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1.1 Our Contribution

In this paper, we extend the work done in [6] and [7] as follows. First, we propose
a reviewed and improved version of the proof given in [7] to show that fsync is
not more powerful than asyncO(1). To this aim, we introduce a new algorithm
which uses less colors to solve the same problem considered in the proof, thus
showing it is solvable in async3 rather than in async4. Second, we generalize
the newly introduced algorithm into a general algorithmic framework that for
any k > 2 allows (any number of) robots operating in asynck to address all
tasks within class of basic formation problems having k states (BFPk from now
on). In such problems, described for the first time in [6], the focus is on allowing
robots to achieve specific sequences of k placements regardless of the movements
they perform to reach each disposal. Robots might move on graphs or on the
Euclidean plane. Finally, we show, by means of a specific distributed task, that
there is a non-trivial subset of problems in BFPk for which using robots in
async3 instead of asynck suffice to reach the corresponding goal.

1.2 Structure of the Paper

The paper is organized as follows. In Section 2, we provide the necessary notation
for the considered problems. In Section 3, we give the improved version of the
algorithm given in [7], while in Section 4 we introduce its generalization. In
Section 5, we discuss on how async3 robots can be used to solve all tasks
within a non-trivial subset of BFPk. Finally, Section 6 concludes the paper.

2 Preliminaries

We consider a system composed of mobile entities, called robots, that operate in
LCM-cycles. In particular, each robot is modeled as an independent computa-
tional unit, capable of performing local computations. The robots are placed in
a spatial environment which is assumed to be either the Euclidean plane or an
undirected graph G = (V,E), i.e. robots are placed on the nodes of the graph.
Each robot has its own local perception of the surrounding environment, which
means it can detect all other robots either as points in the plane with respect to
its own coordinate system or perceiving a graph isomorphic to G and understand
whether a node is occupied by a robot or not. Each robot is equipped with sensing
capabilities that return a snapshot of the relative positions of all other robots
with respect to its location.

In the remaining of the paper, we assume that robots are anonymous and
identical, i.e. they are indistinguishable by their appearance, and execute the same
algorithm. Unless differently specified, robots are assumed to be oblivious, i.e. they
have no memory. Moreover, we consider robots acting without a central control,
i.e. they are assumed to be autonomous and not able to directly communicate
information (e.g. by a wireless interface) with other robots, i.e. they are silent.
Each robot is endowed with motor capabilities and can freely move. However,
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when moving on graphs, the movement along one edge is considered instantaneous,
so that each time a robot perceives the snapshot of the current configuration, it
sees all other robots always on the nodes of the graph. We will specify different
assumptions if required by the context.

At any point in time, a robot is either active or inactive. All robots are
initially inactive, i.e. they are idle. When active, a robot executes an LCM-cycle
by performing the following three operations in sequence, each of them associated
with a different state:

– Look: The robot observes the environment. The result of this phase is a
snapshot of the positions of all robots with respect to its own perception.

– Compute: The robot executes its own algorithm, using the data sensed in
the Look phase as input. The result of this phase is a target node among the
neighbors of the node in which the robot currently resides (at most one edge
per cycle can be traversed by a robot).

– Move: The robot moves toward the computed target. If the target is the
current position, then the robot stays still, i.e. it performs what is called a
null movement.

The amount of time to complete a full LCM-cycle is assumed to be finite but
unpredictable.

3 Algorithm 3-ForthBack

In this section, we propose a reviewed and improved version of the proof given
in [7] to show that fsync is not more powerful than asyncO(1). To this aim,
we make use of the following task for the proof.

Forth and Back (FB)

Input: Two anonymous robots placed at two distinct internal nodes of a
path P at some distance d (in terms of number of edges).

Solution: A distributed algorithm that ensures the two robots to alternate
their distance between d and d+ 2.

In [6] it has been already shown that the FB problem cannot be solved in
fsync. They also show that FB can be solved in asyncO(1), by an algorithm
(namely ForthBack) which requires each robot to be equipped with a light
that can assume four colors. Here, we propose an enhanced algorithm, named
Algorithm 3-ForthBack (see Algorithm 1), which is able to solve the problem
even if the robots are endowed with a light that can generate only three colors.

The new strategy has its own practical interest since it improves over the
algorithm given in [6]. In particular, it reduces the number of colors needed
for solving the problem, which can be easily imagined as a proxy for the use
of power/communication resources. In addition, the intuition behind its design
opens new perspectives for devising general strategies dedicated to robots oper-
ating in asynck. We will discuss in the next sections on such aspect. In details,
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Fig. 1. Finite state machine associated to algorithm 3-ForthBack.

we will show that the technique underlying Algorithm 3-ForthBack can
be generalized into an algorithmic framework that allows asynck robots to
address a class of problems of significant interest.

We now proceed with the description of the new algorithm. The three colors
used by Algorithm 3-ForthBack are Red (R), Green (G), and Yellow
(Y), with the following meanings:

– Red indicates that the robot is ready to move for the next step and the
previous distance must be increased;

– Green indicates that the robot is ready to move for the next step and the
previous distance must be decreased;

– Yellow indicates that the robot has moved to decrease the previous dis-
tance and it is ready for the next step.

In what follows, we denote by L[r] the light associated with a given robot
r. At the beginning, both robots start with the lights set to Red. As we will
see, Algorithm 3-ForthBack ensures that, whenever one of the robots has
the light set to Red (to Green, respectively), the other robot will eventually
turn its light to Red (to Green, respectively), i.e. they are always able to be
synchronized at some point. In other words, Algorithm 3-ForthBack solves
FB in async3 by exploiting the parity encoding of the current step by means
of the light. We describe the algorithm as it is executed by a generic given robot
r. For the sake of clarity, we also summarize the behavior of each robot via a
finite state machine (see Figure 1), where the label within a node represents
the color of the light L[r] of the executing robot, while the label above an edge
represents the condition on the light L[r′] of the other robot r′ that triggers the
transition to occur.

Theorem 1. Algorithm 3-ForthBack correctly solves the FB problem in
async3 .

Proof. First of all, notice that, if d is the initial distance between the two robots
(when both lights are Red), then d + 2 defines the final placement of the two
robots after the first step. Therefore, in order to reach the requested configuration,
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Algorithm 1: Algorithm 3-ForthBack performed by a generic robot
r to solve FB in async3.

1 Let r′ be the other robot;
2 Let δ be my distance from r′;
3 if L[r] = Red then
4 if L[r′] = Red ∨ L[r′] = Green then
5 L[r] := Green;
6 Let v be the neighbor at distance δ + 1 from r′;
7 The new position is v;
8 Exit;
9 if L[r] = Green then

10 if L[r′] = Green ∨ L[r′] = Yellow then
11 L[r] := Yellow;
12 Let v be the neighbor at distance δ − 1 from r′;
13 The new position is v;
14 Exit;
15 if L[r] = Yellow then
16 if L[r′] = Yellow ∨ L[r′] = Red then
17 L[r] := Red;
18 Exit;

when a robot has to move to increase its distance (i.e. its light is Red), if the
current distance is d′, then the target distance has to be set to d′+1 (see Line 7),
since both robots contribute of one edge.

Similarly, if d+ 2 is the distance between the two robots after an increasing
step, then d defines the placement of the two robots after the current step. Hence,
in order to reach the requested configuration, when a robot has to move to
decrease its distance (i.e. its light is Green), if the current distance is d′, then
the target distance has to be set to d′ − 1 (see Line 13), since both robots
contribute of one edge.

Now, if L[r] is either Red or Green, then r is ready to accomplish a
movement, which must either increase the distance of the previous placement
(L[r] = Red case) or decrease it (L[r] = Green case). The robot r can decide
which is the case by looking at the light of the other robot.

On the one hand, if L[r] = Red and L[r′] is either Red or Green (see
Line 4), then r must move away from r′ of one edge, as robot r′ is either ready
to move to increase the distance (L[r′] = Red) or is ready to move to decrease
the distance(L[r′] = Green). On the other hand, if L[r] = Green and L[r′]
is either Green or Yellow (see Line 10), then r must move closer to r′
of one edge since robot r′ is either ready to move to decrease the distance
(L[r′] = Green) or has already accomplished a movement that has decreased
it (L[r′] = Yellow).

If L[r] is Yellow and L[r′] is either Red or Yellow, then r can conclude
that r′ is either ready to move to increase the distance (L[r′] = Red) or has
already terminated a movement whose purpose was that of decreasing the distance
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(L[r′] = Yellow). Robot r, in this case, just switch its light to Red (see
Line 17). If r′ has performed the above step before r, i.e. L[r] = Yellow and
L[r′] is Green, then, r simply keeps L[r] to Yellow. ut

4 Generalizing Algorithm 3-ForthBack

In this section, we propose a general algorithmic paradigm that allows robots
operating in asynck, k > 2 to address a whole class of problems, namely the
basic formation problems BFPk.

BFPk problems can be informally defined as the class of problems where a
set of k static configurations have to be (possibly cyclically) reached, in order
to achieve the goal, regardless of the movements they perform to reach each
disposal (see [6] for a more thorough discussion). We remind that the class
of BFPk problems can be defined for robots moving on both graphs and the
Euclidean plane.

More formally, problems are in BFPk if and only if their dynamics can be
completely described by a finite state machine (o by any subset of it) with the
following characteristics:

– there are k distinct states;
– there exists a total (strict) ordering among the k states, i.e. for every i–th

state there exists a transition that brings the system from state i to a state
(i+ 1) mod k.

In other words, the problem asks the robots to change from a state to another
one in a sequential manner, according to some criteria. An example of finite state
machine of the above kind is reported in Figure 2, where label xi within a node
represents the i–the state in the ordering. Clearly the above class of problems
satisfies BFP1 ⊆ BFP2 ⊆ · · · ⊆ BFPk for any k.

Trivially, the FB problem, discussed in Section 3, belongs to BFP2, since
the robots have to cyclically oscillate between k = 2 distinct configurations, i.e.
those in which the robots are at distance d′+ 1 and d′− 1. However, to solve FB
we required 3 colors in order to synchronize the robots. Whereas, when k > 2
there is no need for an extra color.

Note that, problems in BFPk might be solvable in fsync or not. This
possibility depends on the capability of the robots of distinguishing, by only
observing the surrounding environment, two states that are adjacent in the
sequence (and therefore are connected by a transition in the finite state machine).
If robots are capable of doing so, it is easy to see that (any number of) fsync
robots can solve problems of BFPk in Θ(k) time steps by the following very
simple strategy. Starting from an initial state x0, at each synchronous time step,
all robots wake up and perceive the very same snapshot of the surrounding
environment. Then, given the state they perceived, say xi, they all check the
criterion associated to the arcs outgoing xi in the finite state machine (i.e. they
perform the compute phase) and, according to the result they perform the move
phase that either brings them into x(i+1) mod k or keeps them into xi. An example
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Fig. 2. Finite state machine associated to problems in BFPk.

of problem in BFPk that is not solvable in fsync is indeed problem FB, since
the knowledge obtained by the acquired snapshot is not enough to determine
whether the target distance has to be set to d′+1 or to d′−1 and hence to decide
the next state. On the contrary, an example of problem in BFPk that is solvable
in fsync, by the above strategy, is the so-called Pattern Series Chasing (PSC)
problem whose first description can be found in [7], and is reported below.

Pattern Series Chasing (PSC)

Input: An undirected and complete graph G with nodes labeled from 1 to
n. An array A of c patterns, for some integer constant c > 0, each
involving k < n nodes of G, such that A[i] 6= A[j], for every 0 ≤ i 6=
j < c. A set of k robots forming A[0] in G.

Solution:A distributed algorithm that ensures robots to form pattern A[(i+ 1)
mod c] after A[i mod c], i ∈ N.

Regarding FB, in the previous section we have shown that it can be solved
by two async3 robots by Algorithm 1. By following the intuition underlying
such algorithm, we now give a generalization of it that allows (any number of)
asynck robots to solve problems in BFPk for k > 2. The main idea behind the
algorithmic paradigm we are proposing is based on the fact that, when considering
BFPk problems, an implicit ordering can be provided by the lights of asynck
robots.

The strategy for solving any BFPk by asynck robots can be summarized as
follows (see Algorithm 2 for more details). Suppose we are given a generic problem
in BFPk and a set R = r1, r2, . . . , rn of n robots. We denote by L[rx] the color
assumed by the light of robot rx. We equip the robots with lights assuming
k colors with the following meaning: color coli indicates that the robot is in
state xi and it is ready to move to state x(i+1) mod k, and to accomplish the
associated (possibly null) move phase. Moreover, we assume that colors exhibit
a total (strict) ordering, i.e. for each color xi there exist two colors x(i±1) mod k

such that x(i−1) mod k < xi < x(i+1) mod k. To solve the problem is then enough
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Algorithm 2: Algorithmic paradigm that allows (any number of) asynck
robots to solve problems in BFPk, k > 2.

1 Let ri be the robot executing the algorithm;
2 if L[ri] = colxi then
3 foreach rj ∈ R : i 6= j do
4 if L[rj ] < L[ri] then
5 Exit;
6 L[ri] := colx(i+1) mod k

;
7 Perform move phase of state x(i+1) mod k;
8 Exit;

to exploit the ordering of the colors to take coherent decisions about the state to
be reached. In particular, each robot ri performs its (possibly null) move phase
if and only if its current color L[ri] = colxi

is less or equal than the colors of
the lights of all other robots. If so, it also switches its light to colx(i+1) mod k

.
By the above discussion, the following result can be stated.

Theorem 2. asynck robots can solve any problem in BFPk, k > 2.

It is worth noticing that Algorithm 3-ForthBack, given in the Section 3,
can be easily derived by Algorithm 2 by considering the different move phases
associated to each of the two states of problem FB.

As a final remark, note that an algorithm for solving problem PSC by
asyncc robots, where c is the cardinality of the array A, can be derived as well
by Algorithm 2 by customizing each move phase according to the pattern to be
reached.

5 Further Applications of Algorithm 3-ForthBack

In this section, we show that there is a non-trivial category of problems in BFPk

for which something better than using asynck robots can be done. To this aim,
we first define the main characteristics of such category and show they can be
solved by weaker async3 robots. Consider again Algorithm 3-ForthBack
defined in Section 3, the three colors have been though to encode the static
configurations, but they can be used to simply encode an advancing in the
current computational process. This is not the case for the PSC problem as
shown in [7]. In order to better understand the intuition, we now consider a
variant of the classical patrolling problem, where three robots must infinitely
traverse a circle but ensuring some specific configurations where they are all idle.
It means that during the patrolling, robots must ensure some predefined static
configurations.

Given a circle C, let arc(x, y) be the smallest arc of C from x to y.
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Patrolling With Stops (PWS)

Input: Three anonymous robots r1, r2 and r3 placed on a circle C with
center c, such that arc(r1, r2) = d, arc(r2, r3) = 2d, d < π

6 .
Solution: A distributed algorithm that ensures the three robots to patrol C

by forming a static configuration similar to C each time the angle α
in c defined by the initial position of r1, c and the current position
of r1 is p · π3 , for any integer p.

In PWS, we have considered six static configurations that must be reached
cyclically, by setting the angle α as a multiple of π3 . Clearly an arbitrary number
of configurations can be considered by reducing α. According to Theorem 2, we
know how to solve PWS in async6. We now show that an algorithm similar
to Algorithm 3-ForthBack can be defined to solve the PWS problem in
async3.
Theorem 3. There exists an algorithm in async3 that solves the PWS prob-
lem.
Proof. The proof proceeds by providing three subroutines of the same algorithm,
each one executed by a different robot, according to its role among r1, r2 and r3.
Although the three robots are anonymous, by looking to their relative positioning
and lights, they can always deduce who they are. As we are going to show, our
algorithm never changes the role of a robot. The meaning of the lights is the
same for all robots, that is:
– Red: ready to reach the new static configuration
– Green: moving to the computed target
– Yellow: target reached
The minimum arc of C containing all three robots is always divided into

two sub-arcs. The middle robot is always r2. Initially (when all robots assume
light Red), the closest robot to r2 is r1, while the other is r3. The proposed
algorithm makes r3 move always as first, increasing its distance from r2. This is
done by switching L[r3] to Green and evaluating the next position where a
static configuration must be guaranteed. Movements are always performed along
the circumference of C as the patrolling requires.

While L[r3] = Green, r1 and r2 do not move. Once L[r3] = Yellow,
r2 can start its movement toward the next position. Due to the adversary, each
time a robot moves toward a target position, it can reach it or it can be stopped
before. Nevertheless, our algorithm is designed so as the same robot will be the
unique one allowed to move until it reaches the desired destination, eventually.

Once both r2 and r3 have reached their current destinations and L[r2] =
L[r3] = Yellow, the last robot that has to move deduces it is r1.

Once all robots have reached their destinations, L[r1] = L[r2] = L[r3] =
Yellow and the configuration is static, that is a stop has been performed and
the next positioning can start. This is done first by switching all the lights to
Red, but in a sequential order, starting from r3, then r2 and finally r1. Then,
the whole process is repeated. ut
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Algorithm 3: Algorithm PWS {r1} performed by r1

1 Let x be the point on C between r1 and r2 such that |arc(x, r3)| = 3
2 |arc(r2, r3)|;

2 if (L[r] = Red ∧L[r2] = L[r3] = Yellow)∨ (L[r] = Green ∧ |arc(r, r3)| > x)
then

3 L[r] := Green;
4 The new position is x;
5 Exit;
6 if L[r] = Green then
7 L[r] := Yellow;
8 Exit;
9 if L[r] = Yellow ∧ L[r2] = L[r3] = Red then

10 L[r] := Red;
11 Exit;

Algorithm 4: Algorithm PWS {r2} performed by r3

1 Let x be the point on C between r2 and r3 such that
|arc(x, r3)| = 2

3

(
|arc(r1, r3)| − arcsin π

3

)
;

2 if (L[r] = Red ∧ L[r3] = Yellow) ∨ (L[r] = Green ∧ |arc(r, r3)| > x) then
3 L[r] := Green;
4 The new position is x;
5 Exit;
6 if L[r] = Green then
7 L[r] := Yellow;
8 Exit;
9 if L[r] = L[r1] = Yellow∧ = L[r3] = Red then

10 L[r] := Red;
11 Exit;

6 Conclusion

In this paper, we have considered the problem of devising protocols for luminous
asynchronous robots. In details, we have extended the work done in [6] and [7] in
three directions. We first have proposed a reviewed, improved version of the proof
given in [7] to show that fsync is not more powerful than asyncO(1). To do
so, we have introduced a new more efficient algorithm for solving the FB problem
that requires less colors to work with respect to to its previous counterpart of [7].
Apart from the desirable property of being optimized in terms of colors, the new
algorithm has driven us also to the design of its generalization that allows (any
number of) asynck robots to address any problem in BFPk, for any k > 2.
As a final contribution, we have shown that there exists a non-trivial subset of
problems in BFPk for which weaker async3 robots are powerful enough to
achieve the considered goal.
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Algorithm 5: Algorithm PWS {r3} performed by r3

1 Let x be the point on C such that |arc(r1, x)| = 3|arc(r1, r2)|+ arcsin π
3 ;

2 if (L[r] = Green ∧ |arc(r1, r)| < |arc(r1, x)|) ∨ L[r] = L[r1] = L[r2] = Red
then

3 L[r] := Green;
4 The new position is x;
5 Exit;
6 if L[r] = Green then
7 L[r] := Yellow;
8 Exit;
9 if L[r] = L[r1] = L[r2] = Yellow then

10 L[r] := Red;
11 Exit;
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Abstract. Identifying the most influential spreaders is an important
issue for the study of the dynamics of information diffusion in complex
networks. In this paper we analyze the following spreading model. Initially,
a few nodes know a piece of information and are active spreaders of it.
At subsequent rounds, spreaders communicate the information to their
neighbors. Upon receiving the information, a node becomes aware of it
but does not necessarily become a spreader; it starts spreading only if
it gets the information from a sufficiently large number of its neighbors.
We study the problem of choosing the smallest set of initial spreaders
that guarantee that all the nodes become aware of the information. We
provide hardness results and show that the problem becomes tractable
on trees. In case of general graphs, we provide an efficient algorithm
and validate its effectiveness (in terms of the solution size) on real-life
networks.

1 Introduction

During the past decade spreading processes in complex networks have experienced
a particular surge of interest. A large part of research activity in the area deals
with the analysis of influence spreading in social networks. There are many
situations where members of a network may influence their neighbors’ behavior
and decisions, by swaying their opinions, by suggesting what products to buy,
or simply by passing on a misinformation [7,23,30]. A key research question,
related to understand and control the spreading dynamics, is how to efficiently
identify a set of users that can diffuse information within the network. This is the
problem addressed in this paper. Our scenario posits a population consisting of
n individuals that, with respect to the information, are subdivided into ignorant,
aware, and spreading. Initially, all individuals are ignorant. Then an initial set of
spreaders is selected. When a spreader informs an ignorant node v, the ignorant
node v becomes aware; as soon as the individual v is informed by a number of
spreaders greater than a threshold t(v), it starts spreading the information itself.
The motivations that lead us to consider such a scenario come from experimental
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studies of how information spread in social networks. Indeed, information doesn’t
flow freely in the network but it requires active sharing which, in turn, depends
on individual conviction to pass it on. We refer to [2] for a study of how exposure
to social signals affects diffusion.

We model the network as an undirected graph G = (V,E), where V is the
set of individuals and the set of edges E represents the relationships among
members of the network, i.e., (u, v) ∈ E if individuals u and v can directly
communicate. We posit a threshold function t : V → {0, 1, 2, . . .}, and we denote
by N(v) the neighborhood of v ∈ V . An active diffusion process starting at
S ⊆ V is a sequence of node subsets: SpreaderG[S, τ ], τ = 0, 1, . . . , such that
SpreaderG[S, 0] = S and

SpreaderG[S, τ ] = SpreaderG[S, τ − 1] ∪
{
u s.t.

∣∣N(u) ∩ SpreaderG[S, τ − 1]
∣∣ ≥ t(u)

}
,

for τ ≥ 1. The process terminates when SpreaderG[S, ρ] = SpreaderG[S, ρ − 1]
for some ρ > 1. We denote by SpreaderG[S] = SpreaderG[S, ρ]. Hence, when the
process stops the set of aware nodes is

AwareG[S] = SpreaderG[S] ∪
{
u s.t.N(u) ∩ SpreaderG[S] 6= ∅

}
.

Given G, a threshold function t(·), we aim to identify a small node set S ⊆ V
such that AwareG[S] = V .3 Namely, we consider the following problem,

Perfect Awareness (PA).
Instance: A graph G = (V,E), node thresholds t : V −→ N0.
Question: Find a seed set S ⊆ V of minimum size such that Aware[S] = V .

We refer to the set S for which Aware[S] = V as a perfect seed set and to the
nodes in S as seeds.

1.1 Related Work and Our Results

The above algorithmic problem has its roots in the area of the spread of influ-
ence in Social Networks. Maximizing the spread of viral information across a
network naturally suggests many interesting optimization problems (see [7,17]
and references quoted therein). The first authors to study spread of influence
in networks from an algorithmic point of view were Kempe et al. [19,20,21].
Chen [6] studied the following minimization problem: given a graph G and fixed
thresholds t(v), for each vertex v in G, find a set of minimum size that even-
tually influences all (or a fixed fraction of) the nodes of G. This problem is
usually referred as the Target Set Selection Problem (TSS). He proved a strong
inapproximability result that makes unlikely the existence of an algorithm with
approximation factor better than O(2log1−ε |V |). Chen’s result stimulated a series
3 In the rest of the paper we omit the subscript G whenever the graph is clear from
the contex.
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of papers [1,3,5,8,9,10,11,12,18,27,28] that isolated interesting cases in which the
problem (and variants thereof) become tractable. Heuristics for the TSS problem
that work for general graphs have been proposed in the literature [13,16,29].

However, the papers appeared in the scientific literature considered the basic
model in which any node, as soon as it is influenced by its neighbors, it immedi-
ately starts spreading influence. In this paper we consider a more refined model
that differentiates among spreaders and plain aware node. This model has been
first considered in [14], where the Awareness Maximization Problem in which
one asks for a set S, with |S| ≤ β, that achieves the maximum awareness in the
network has been studied.

In Section 2, we study the computational complexity of the PA problem and
extend the TSS problem hardness result to the PA problem. In Section 3, we give
an algorithm that outputs a perfect seed set for any input graph. Experimental
evaluation of the proposed algorithm is given in Section 4; it shows that the
proposed algorithm outperforms some heuristics developed for related problems.
Finally, we show that our problem becomes tractable if the graph is a tree (Section
5).

We would like to remark that if the threshold t(v) is equal to the node degree
d(v), for each v ∈ V , then a perfect target set for G is, indeed, a dominating
set for G. Hence, the proposed algorithm outputs a dominating set for G and
computational experiments suggest that it performs very well in practice.

2 Complexity

We prove the hardness of the PA problem by constructing a gap-preserving
reduction from the TSS problem. We recall that the TSS problems, given G =
(V,E) with threshold function t : V → N , asks to identify a minimum size S ⊆ V
such that Spreader[S] = V . Our Theorem 1 follows from the inapproximability
results for the TSS problem given in [6].

Theorem 1. The PA problem cannot be approximated within a ratio of O(2log1−εn),
for any ε > 0, unless NP⊆DTIME(npolylog(n)).

Proof. We give a reduction from the Target Set Selection problem.
Consider an instance of the TSS problem consisting in a graph G = (V,E) with
threshold function t(·). Let V = {v1, . . . , vn}, we build a graph G′ = (V ′, E′) as
follows:

– Replace each vi ∈ V by a triangle in which the node set is V ′i = {vi,0, vi,1, vi,2}.
Formally,
– V ′ =

⋃n
i=1 V

′
i = {vi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ 2}

– E′ = {(vi,0, v`,0) | 1≤i<`≤n, (vi, v`) ∈ E }
⋃

{(vi,j , vi,`) | i = 1, . . . , n, 0≤j<`≤2 };
– the thresholds are t′(vi,0) = t(vi) and t′(vi,1) = t′(vi,2) = 2, for i = 1, . . . , n.
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Notice that G corresponds to the subgraph of G′ induced by the set {vi,0|1 ≤
i ≤ n}. We show that there exists a target set S ⊆ V for G iff there exists a
perfect seed set S′ ⊆ V ′ for G′ such that |S′| = |S|.
Assume first that S ⊆ V is a target set for G. Since SpreaderG[S] = V , then all
the nodes vi,0 ∈ V ′i will become spreaders in G′ when the seed set is S′ = {vi,0 ∈
V ′|vi ∈ S}. Once a node vi,0 becomes a spreader the nodes vi,1, vi,2 are aware in
the next round. Hence, S′ is a perfect seed set for G′, that is AwareG′ [S′] = V ′.
Assume now that S′ ⊆ V ′ is a perfect seed set for G′. Let S′′ = {vi,0 ∈ V ′ | S′ ∩
V ′i 6= ∅}. It is easy to observe that AwareG′ [S′′] = AwareG′ [S′] = V ′. Let V ′0 =
{vi,0 | 1 ≤ i ≤ n}. A node in V ′0 can influence at most 2 nodes in V ′ − V ′0—the
other vertices of the triangle its belongs to. Hence, in order to influence all the
nodes in V ′−V ′0 all nodes in V ′0 must be spreaders, that is, SpreaderG′ [S′′] = V ′0 .
As a consequence, recalling that G is isomorphic to the subgraph of G′ induced
by V ′0 , we get SpreaderG[{vi | S′ ∩ V ′i 6= ∅}] = V . ut

We notice that the Target Set Selection problem remains hard when each
node has threshold upper bounded by a constant; in particular, it was proved
in [6] that approximating it when each node has threshold at most 2 is as hard
as approximating the problem in the general setting, even for constant degree
graphs. Our reduction allows to extend this result as well, namely one has that
the PA problem remains hard to approximate even if all nodes have threshold
at most 2.

3 A general algorithm for the PA problem

In this section we propose an algorithm for the PA problem in case of arbitrary
graphs and thresholds. The algorithm PA(G, t), given in Algorithm 1, works
greedily by iteratively deprecating nodes from the input graph G unless a certain
condition occurs which makes a node be added to the seed set S; it stops when
all nodes have either been discarded or selected as seed.

The algorithm maintains five sets of nodes: S that represents the current
seed set; U that represents the set of nodes in the surviving graph (i.e., nodes
not removed from the initial graph); Temp which is a set of nodes moved into
a temporary waiting state (such nodes still belong to U but their neighbors will
not count on them for being influenced); R that represents a set of nodes that
must become spreaders (but will not do so with the current seed); A is the set
of aware nodes (assuming that all the nodes in R will be indeed spreaders).

The algorithm proceeds as follows: As long as there exists at least a non-aware
node or there is a node in R, a node v is selected according to a certain function
(see Case 3) and is moved into a temporary waiting state, represented by the set
Temp. As a consequence of being in Temp, all the neighbors of v will not count
on v for being influenced (for each u ∈ N(v) the value δ(u), which denotes the
degree of u restricted to the nodes in the U − Temp, is reduced by 1).

Due to this update, some nodes in the surviving graph may remain with less
“usable” neighbors (if a node v /∈ A has δ(v) = 0 or v ∈ R has δ(v) < t(v)); in
such a case (see Case 2) the nodes are added to the seed set and removed from
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the graph, while the thresholds of their neighbors are decreased by 1 (since they
receive v’s influence).

If (see Case 1) the surviving graph contains a node v whose threshold has
been decreased down to 0 (which means that the nodes which have been already
added to the seed set S – see Case 2 – suffice to make v a spreader), v is deleted
from the graph and the thresholds of its neighbors are decreased by 1 (since once
v becomes a spreader, they will receive its influence). Notice that Case 1 can also
apply to nodes in Temp.

Algorithm 1: PA(G, t) //G = (V, E) is a graph with thresholds t(v) for v ∈ V

1 S = ∅; Temp = ∅; U = V ; R = ∅; A = ∅;
2 foreach v ∈ V do
3 k(v) = t(v);
4 δ(v) = |N(v)|;
5 while A 6= V OR R 6= ∅ do
6 if ∃v ∈ U s.t. k(v) = 0 then // Case 1): v is a spreader, thanks to its

neighbors outside U

7 foreach u ∈ N(v) ∩ U do
8 k(u) = max(k(u)− 1, 0); A = A ∪ {u};
9 if v /∈ Temp then δ(u) = δ(u)− 1;

10 U = U − {v}; R = R− {v}; A = A ∪ {v};
11 else
12 if ∃v ∈ (U−Temp) ∩R s.t. δ(v)<k(v) OR ∃v /∈ A s.t. δ(v) = 0

then
// Case 2): v must be a seed

13 S = S ∪ {v};
14 foreach u ∈ N(v) ∩ U do
15 k(u) = k(u)− 1;
16 δ(u) = δ(u)− 1;
17 U = U − {v}; R = R− {v}; A = A ∪ {v};
18 else
19 if U − Temp−R 6= ∅ then // Case 3): v is moved in the

temporary repository
20 v = argminw∈U−Temp−R {δ(w)}
21 if v /∈ A then
22 R = R ∪ {u} where u = argmaxw∈N(v)∩(U−Temp){δ(w)}
23 foreach z ∈ N(u) ∩ U do A = A ∪ {z};
24 else
25 v = argmaxw∈R

{
k(w)

δ(w)(δ(w)+1)

}
;

26 foreach u ∈ N(v) ∩ U do δ(u) = δ(u)− 1;
27 Temp = Temp ∪ {v}; R = R− {v}; A = A ∪ {v};

28 return S
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In such a case the value of δ() of the neighbors of the selected node v were already
reduced by 1—when v moved to Temp—and, therefore, it is not reduced further.
By construction, once a node is moved to Temp, then it will be removed from the
graph only by Case 1; indeed, Case 2 and 3 only apply to nodes outside Temp.
In other words, nodes moved to Temp will never belong to the seed set.

When Case 3 applies the idea is to identify nodes that will never belong to
the initial seed set. Two cases are considered, if the surviving graph still contains
nodes which do not belong to the set R, then one of such nodes having minimum
δ() is moved to the set Temp. Otherwise all the nodes in the surviving graph
must spread and the choice of the node to be deprecated is made according to a
metric first studied in [15]. We notice that the metric used to choose which node
to deprecate, that is to pose in the temporary repository when Case 3 applies,
does not influence the correctness of the algorithm but it is the hearth for its
effectiveness in terms of solution size.

Example 1. Let G be a complete graph, the algorithm PA(G, t) optimally returns
a single seed: At the first iteration of the while loop, Case 3) applies and a node
v1 is selected; then a node v2 is marked as required while all the others—being
neighbors of v2—are marked aware; during the successive iterations, |V |−t(v2)−1
nodes are removed from U ; finally Case 2) holds for v2 which is added to S and
the algorithm returns S = {v2}.

In the rest of the paper, we use the following notation. We denote by n the
number of nodes in G, that is, n = |V | and by λ the number of iterations of
the while loop of algorithm PA(G, t). Given a subset V ′ ⊆ V of vertices of G,
we denote by G[V ′] the subgraph of G induced by nodes in V ′. Moreover, with
respect to the iterations of the while loop in PA(G, t), for each i = 1, . . . , λ we
denote:

– by vi the node selected during the i-th iteration;
– by Ui, T empi, Si, Ri, Ai, δi(u), and ki(u), the sets U, Temp, S,R,A and the

values of δ(u), k(u), respectively, as updated at the beginning of the i-th
iteration.

When i = 1, the above values are those of the input graph G, that is: U1 = V ,
G[U1] = G, δ1(v) = |N(v)| and k1(v) = t(v), for each node v of G.

The following properties will be useful for the algorithm analysis.

Fact 1 For each iteration i of the while loop in PA(G, t),
1. V − Ui ⊆ Ai 2. Tempi ⊆ Ai 3. Ri ⊆ Ui − Tempi

Fact 2 For each iteration i of the while loop in PA(G, t) and u ∈ Ui, it holds

δi(u) = |N(u) ∩ (Ui − Tempi)|
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Lemma 1. Algorithm PA(G, t) executes at most 2n iterations of the while loop
(i.e., λ ≤ 2n).

Proof. First of all we prove that, at each iteration i ≥ 1 of the while loop of
PA(G, t), a node vi ∈ Ui is selected. If Ri = ∅ then Ai 6= V (otherwise the
algorithm terminates). Since by 1. of Fact 1 V − Ui ⊆ Ai we have that there
exist u ∈ Ui such that u /∈ Ai. Then using 2. of Fact 1 we have that u /∈ Tempi
and consequently Ui−Tempi−Ri 6= ∅. Hence a node is selected by Case 1 or by
Case 2 or at line 20 of the algorithm. Otherwise (Ri 6= ∅) and a node is selected
by Case 1 or by Case 2 or at line 25 of the algorithm. We conclude the proof
noticing each v ∈ V can be selected at most twice: Once v is eventually inserted
in Temp (if Case 3 applies) and once v is removed from U (if either Case 1 or
Case 2 apply). Indeed by 3. of Fact 1, Case 3 only applies to nodes in Ui−Tempi.

Theorem 2. For any graph G = (V,E) and threshold function t(·), the algorithm
PA(G,t) returns a perfect seed set for G in O(|E| log |V |) time.

Proof. In order to show that the set S provided by the algorithm PA(G,t) is a
perfect seed set for G, we first show that for each i = 1, . . . , λ the set Si is able
to make all the nodes in

Ri =
λ⋃
j=i

(Ri ∪ {u /∈ Ai such that δi(u) = 0})

a spreader, that is Ri ⊆ SpreaderG[Ui][Si]. We show it by induction with i going
from λ back to 1.

Consider first i = λ. Let vλ a node in G[Uλ]. Since λ is the last step and at
most one node is removed from R at each step, we have that Rλ = ∅ or Rλ = {vλ}
. We distinguish three cases on the selected node vi.
– (Case 1 holds). In this case kλ(vλ) = 0 and vλ is immediately spreader in
G[Uλ] and the statement is clearly satisfied.

– (Case 2 holds). In this case (Rλ = {vλ} and kλ(vλ) > δλ(vλ)) or (vλ /∈ Aλ
and δλ(vλ) = 0) and consequently Sλ = {vλ} and Rλ ⊆ SpreaderG[Uλ][Sλ].

– Finally we show that case 3 cannot hold at the last iteration of the algorithm.
Indeed if Rλ = ∅ then vλ /∈ Aλ (otherwise the algorithm cannot terminate at
round λ). In this case a new node is added to R at the line 22 of the algorithm
and the algorithm cannot terminate at round λ. We notice that this node
must exists, otherwise δλ(vλ) = 0 and Case 2 holds. On the other hand, if
Rλ = {vλ} then Uλ − Tempλ − Rλ = ∅ and we have Uλ − Tempλ = {vλ}
and consequently δλ(vλ) = 0. Since we are in case tree we also know that
kλ(vλ) > 0 and Case 2 holds.

Consider now i < λ and suppose the algorithm be correct on G[Ui+1], that is,
Ri+1 ⊆ SpreaderG[Ui+1][Si+1]. We show that the algorithm is correct on G[Ui]
with thresholds ki(u) for u ∈ Ui.
By the algorithm PA, for each u ∈ Ui we have

ki+1(u)=
{

max(ki(u)−1, 0) if Case 1 or 2 hold and u ∈ N(vi) ∩ Ui
ki(u) otherwise,

(1)
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where vi is the node selected at iteration i.
We distinguish three cases on the selected node vi.

– (Case 3 holds). In this case Ui = Ui+1 and Si+1 = Si. Moreover by (1),
ki+1(u) = ki(u) for each u ∈ Ui+1. If vi /∈ Ri then Ri ⊆ Ri+1 and conse-
quently Ri = Ri+1 ⊆ SpreaderG[Ui+1][Si+1] = SpreaderG[Ui][Si].
Otherwise (vi ∈ Ri) we have Ri ⊆ Ri+1 ∪ {vi}, Ui − Tempi −Ri = ∅ and by
3. of Fact 1 , we have Ui − Tempi = Ri. Hence,

(N(v) ∩ (Ui − Tempi)) ⊆ Ri+1 (2)

Since we are in Case 3 and vi ∈ Ri then δi(v) ≥ ki(v). Using this, Fact 2 and
equation (2), we have that since Ri+1 ⊆ SpreaderG[Ui+1][Si+1] then Si+1 = Si
is able to make vi a spreader in G[Ui] and we have Ri ⊆ SpreaderG[Ui][Si].

– (Case 2 holds). In this case Ui+1 = Ui − {vi}, Ri ⊆ Ri+1 ∪ {vi} and Si =
Si+1 ∪ {vi}. Hence vi ∈ Spreader[Si]. Moreover by (1), it follows that for
any u ∈ N(vi) ∩ Ui, if u ∈ Spreader[Si+1] then u ∈ Spreader[Si]. Hence
Ri ⊆ Spreader[Si].

– (Case 1 holds). In this case we have ki(vi) = 0, Ui+1 = Ui−{vi}, Ri ⊆ Ri+1∪
{vi} and Si = Si+1. Since ki(vi) = 0, node vi is immediately spreader in G[Ui].
Hence by (1), each neighbor u of vi in G[Ui] is influenced by vi and its thresh-
old is updated according to (1). Therefore, sinceRi+1 ⊆ SpreaderG[Ui+1][Si+1],
we have that Ri ⊆ SpreaderG[Ui][Si].

The statement follows since G[U1] = G.
The theorem follows by observing that a node is moved to the set A only if

(v ∪N(v))∩R1 6= ∅ and that the algorithm terminates when all nodes are aware
(A = V ) and the set R is empty.

The PA algorithm can be implemented to run in O(|E| log |V |) time. Indeed
we need to process the nodes v ∈ V—each one at most two times (see Lemma
1)—according to the metrics δ(v) and k(v)/(δ(v)(δ(v) + 1)), and the updates,
that follows each processed node v ∈ V involve at most |N(v)| neighbors of v.

4 Experimental Results

Due to Theorem 1, we cannot aim to any significant performance guaranteed
on the seed set size for general graphs and threshold functions. Nonetheless,
extensive experiments show that our algorithm performs very well on large real
networks, both in terms of efficiency of the solution and of the running time.

We conducted experiments on 12 real networks of various sizes from the
Stanford Large Network Data set Collection (SNAP) [24], the Social Computing
Data Repository at Arizona State University [31] and Newman’s Network data
[26]. The main characteristics of the studied networks are shown in Table 1.

The active information diffusion problem is a novel model of information
diffusion and, to the best of our knowledge, no heuristic is known for the PA
problem. For this reason we decided to evaluate the effectiveness of our algorithm
(PA) with two heuristics that respectively solve two problems related to the PA
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Name # of nodes # of edges Max Size of Clust. Modularity
degree the LCC Coeff.

BlogCatalog3 [31] 10312 333983 3992 10312 0.4756 0.2374
Ca-AstroPh [24] 18772 198110 504 17903 0.6768 0.3072
Ca-CondMath [24] 23133 93497 279 21363 0.7058 0.5809
Ca-GrQc [24] 5242 14496 81 4158 0.6865 0.7433
Ca-HepPh [24] 10008 118521 491 11204 0.6115 0.5085
Ca-HepTh [24] 9877 25998 65 8638 0.5994 0.6128
Cit-HepTh [24] 27770 352807 64 24700 0.3120 0.7203
Douban [31] 154907 327162 287 154908 0.048 0.5773
Facebook [24] 4039 88234 1045 4039 0.6055 0.8093
Jazz [26] 198 2742 100 198 17899 0.6334
Karate [26] 34 78 17 5 45 0.5879
Power grid [26] 4941 6594 19 4941 0.1065 0.6105

Table 1. The networks.

problem. The first heuristic, named MTS [15], is devoted to the minimum target
set selection (TSS) problem where the aim is to have each node become a spreader.
We have chosen this TSS heuristics since it experimentally outperforms the other
known algorithms [13,22,29] for the TSS problem, see [15].

The rationale of this comparison is to show that by relaxing the goal of the
TSS model for the new model (which only aims to make each node aware) we
are able to identify significantly smaller seed sets.
On the other hand, when all the thresholds t(v) are equal to the node degrees
d(v), the PA problem is equivalent to the well known Dominating Set problem.
For this reason we will compare our algorithm with the (best known) heuristic
[4], named DOM, for the Dominating Set problem.
Thresholds values. We tested the three algorithms using two categories of
threshold function:
– Random thresholds where t(v) is chosen uniformly at random in the interval

[1, d(v)]. Since the random thresholds test settings involve some randomiza-
tion, we executed each test 10 times. The results were compared using means
of target set sizes (the observed variance was negligible);

– Proportional thresholds, where for each v the threshold t(v) is set as α ×
d(v) with α = 0.1, 0.2, . . . , 1. Notice that for α = 0.5 we are considering
a particular version of the activation process named “majority” thresholds,
while for α = 1 we are considering the Dominating Set problem.

4.1 Test Results

Random Thresholds. Table 2 depicts the results of the Random threshold test set-
ting. Each number represents the average size of the perfect seed set generated by
PA and MTS algorithms on each network using random thresholds (for each test
setting, the same thresholds values have been used for both the algorithms). The
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Name PA MTS
BlogCatalog3 10 12 (20%)
Ca-AstroPh 919 1157 (25.9%)
Ca-CondMath 1573 1810 (15.07%)
Ca-GrQc 636 661 (3.93%)
Ca-HepPh 790 901 (14.05%)
Ca-HepTh 964 945 (-1.97%)
Cit-HepTh 955 1045 (9.42%)
Douban 2374 2343 (-1.31%)
Facebook 9 213 (2267%)
Jazz 4 7 (75%)
Karate 3 3 (0%)
Power grid 352 340 (-3.41%)

Table 2. Random Thresholds Results: For each network and each algorithm, the average
size of the perfect seed set is depicted.

value in bracket represents the overhead percentage of MTS algorithm compared
to the PA algorithm.

Constant and Proportional thresholds. Figures 1 and 2 report the results for
the proportional thresholds settings. For each network the plot depicts the size
of the perfect seed set (Y-axis), for each value of α ∈ [0.1, 1] (X-axis) and for
each algorithm (series). We present the results only for 4 networks because of
space limits; the experiments performed on the other networks exhibit similar
behaviors.
The results in Fig. 1 and 2 confirm our hypothesis. The size of the initial seed
set provided by our PA algorithm is in general significantly smaller than the size
of the set provided by the other strategies. We notice that the gap between the
PA and the MTS algorithms increase with the value of the node thresholds (this
result was expected: the larger the value of t(), the larger the difference between
the models). The PA algorithm is always better than the DOM algorithm, when
t(v) < d(v). Moreover when t(v) = d(v) (that is, when the PA problems becomes
the Dominating Set Problem), the two algorithms provide comparable results,
hence the PA algorithm could be considered as an effective alternative heuristics
for the dominating set problem.

5 Trees.

Let T = (V,E) be a tree rooted at any node r, and let T (v) the subtree rooted
at v, for any v ∈ V . We can prove that the algorithm PA outputs an optimal
perfect seed set whenever the input graph is a tree.

Theorem 3. PA(T, t) returns an optimal perfect seed set for any tree T .
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Fig. 1. Proportional Thresholds Results: CA-GrQc network and Power grid network

Fig. 2. Proportional Thresholds Results: Douban network and Ca-HepTh network.

Fig. 3. Numbers inside circles are the node thresholds, double–circled denote seeds,
dashed–circled lines denote aware nodes, solid–circled nodes denote spreaders.
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If T is the tree in Fig. 3 one can see that the algorithm PA(T, t) returns a optimal
seed set—consisting of the three double-circled nodes in the figure.

In order to evaluate the time complexity for trees, we report as TREE-PA
the rewriting of the general PA algorithm in Section 3 in case the input graph
is known to be a tree. One can see that the algorithm essentially computes the
seed set while performing a visit (in BFS reverse order) of the tree. We can then
show that

Theorem 4. The PA problem can be solved in linear time for any tree.

Algorithm 2: TREE-PA(T , t), T = (V, E) is a tree with thresholds t(v) for
v ∈ V

1 S = ∅; A = ∅; P = ∅;
2 foreach v ∈ V in a BFS reverse order do
3 if v 6= r then // v is not the root node
4 if t(v) = 0 then
5 t(fv) = t(fv)− 1; // fv denotes v’s father
6 A = A ∪ {fv}
7 else
8 if v ∈ P AND t(v) ≥ 2 then
9 S = S ∪ {v};

10 t(fv) = t(fv)− 1;
11 A = A ∪ {fv}
12 else
13 if v /∈ A OR (v ∈ P AND t(v) = 1) then
14 P = P ∪ {fv} // fv must spread

15 if v = r AND t(v) > 0 AND v /∈ A− P then S = S ∪ {v}
16 return S

6 Conclusion and Open Problems

We have studied some algorithmic aspects of a recently introduced information
diffusion model, that differentiates among spreaders and aware nodes [14]. Many
interesting questions related to this model remain open and might be interesting
to study:
- Real life social networks are characterized by the existence of highly connected
communities and it was observed that in real networks, having high modularity
[25], it is often difficult for information to flow from one community to another.
This suggests that one should consider each (dense) community separately. From
a result in [14], we know that it is possible to relate the minimum graph degree
to the size of a perfect seed set. Namely, in any graph G with t(v) ≤ t and
d(v) ≥ |V |+t−3

2 , for each v ∈ V , any independent set which is either maximal
or has size 2t − 2 is a perfect seed set for G. Establishing a significant lower
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bound on the size of the seed set of a dense graph has (so far) eluded our efforts.
However, we recall that deciding if there exists a perfect seed set of size less than
t is a hard problem in general. It would be interesting to establish to what extent
such an hardness result still holds for dense graphs.
- More generally, are there class of graphs, other then trees and cliques, for which
the problem can be either efficiently solved or admits a small approximation
factor?
- It would also be interesting to determine a significant upper bound on the size
of a perfect seed set in terms of node degree and threshold, in the spirit of the
bound derived in [1] for the TSS problem.
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Abstract. More smart objects and more applications on the Internet of
Things (IoT) mean more security challenges. In IoT security is crucial but
difficult to obtain. On the one hand the usual trade-off between highly
secure and usable systems is more impelling than ever; on the other hand
security is considered a feature that has a cost often unaffordable. To
relieve this kind of problems, IoT designers not only need tools to assess
possible risks and to study countermeasures, but also methodologies to
estimate their costs. Here, we present a preliminary methodology, based
on the process calculus IoT-LySa, to infer quantitative measures on
systems evolution. The derived quantitative evaluation is exploited to
establish the cost of the possible security countermeasures.

1 Introduction

Within few years the objects we use every day will have computational capabilities
and will be always connected to the Internet. In this scenario, called the Internet
of Things (IoT), these “smart” devices are equipped with sensors to automatically
collect different pieces of information, store them on the cloud or use them to
affect the surrounding environment through actuators. For instance, our smart
alarm clock can drive our heating system to prepare us a warm bathroom in the
morning, while an alarm sensor in our place can directly trigger an emergency
call to the closest police station. Also, in a storehouse stocking perishable food,
equipped with sensors to determine the internal temperature and other relevant
attributes, the refrigeration system can automatically adapt the temperature
according to the information collected by sensors.

The IoT paradigm introduces new pressing security challenges. On the one
hand, the usual trade-off between highly secure and usable systems is more critical
than ever. On the other hand, security is considered a costly feature for devices
with limited computational capabilities and with limited battery power.

Back to the refrigerator system above, an attacker can easily intercept sensors
communications, manipulate and falsify data. We can resort to cryptography and
? Work supported by project PRA_2016_64 “Through the fog” (University of Pisa).
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to consistency checks to prevent falsification and to detect anomalies. But is it
affordable to secure all the communications? Can we still obtain a good level of
security by protecting only part of communications?

IoT designers have to be selective, e.g. in choosing which packets to encrypt.
To this aim, designers not only need tools to assess possible risks and to study
countermeasures, but also methodologies to estimate their costs. The cost of
security can be computed in terms of time overhead, energy consumption, band-
width, and so on. All these factors must be carefully evaluated for achieving an
acceptable balance among security, cost and usability of the system.

First, we introduce functions over the enhanced labels to associate costs to
transitions. Here, the cost of a system is specified in term of the time spent for
transitions, and it depends on the performed action as well as on the involved
nodes. However, we can easily treat other quantitative properties, e.g. energy con-
sumption. Intuitively, cost functions define exponential distributions, from which
we compute the rates at which a system evolves and the corresponding CTMC.
Then, to evaluate the performance we calculate the stationary distribution of
the CTMC and the transition rewards.

Usually, formal methods provide designers with tools to support the devel-
opment of systems and to reason about their properties, both qualitative and
quantitative. Here, we present some preliminary steps towards the development
of a formal methodology to support the analysis of the security cost in IoT sys-
tems. We aim at providing a general framework with a mechanisable procedure
(with a small amount of manual tuning), where quantitative aspects are symbol-
ically represented by parameters. Their instantiation is delayed until hardware
architectures and cryptographic algorithms are fixed. By only changing these
parameters designers could compare different implementations of an IoT system
and could choose the better trade-off between security and costs.

Technically, we define an enhanced semantics for IoT-LySa, a process cal-
culus recently proposed to model and reason about IoT systems [4]. IoT-LySa
is equipped with a static analysis that safely approximates how data from sensors
spread across the system and how objects interact each other’s. Our enhanced
semantics follows the methodology of [7], where each transition is associated
to a cost in the style of [17,1]. Here, the cost is specified in term of the time
spent for the transition i.e. it is the rate of the transition. From rates we me-
chanically derive a continuous-time Markov chains that can be analysed using
standard techniques and tools [19,22]. For simplicity, here we consider a subset of
IoT-LySa without actuators where intra-node communication is carried out
through message passing instead of a shared store. Note that our approach can
be extended to deal with other optimisation criteria, e.g. energy consumption,
particularly critical in IoT systems.

Structure of the paper. In the next section, we briefly introduce the process
calculus IoT-LySa. In Section 3, we present a simple function that assigns
rates to transitions, and we show how to obtain the CTMC associated with a given
system of nodes and how to extract performance measures from it. Concluding
remarks and related work are in Section 4.
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2 IoT-LySa and its Enhanced Semantics

In [4] an IoT system consists of a set of nodes that communicate through message-
passing. Each node is uniquely identified by a label and is made of logical (pro-
cesses) and physical (sensors and actuators) components that interact through
a shared store. For simplicity, in the following we do not consider actuators,
and we replace conditional construct with non deterministic choice. Furthermore,
following the approach in [3] we assume a finite set of keys that are known a
priori by the nodes.

Syntax. In IoT-LySa systems N ∈ N consist of a fixed number of nodes that
host control processes P ∈ P and sensors S ∈ S. The syntax is in Tab. 1, where
V denotes the set of values, while X and Z are the local and the global variables,
respectively, and K ⊆ V denotes the set of cryptographic keys (e.g. K0).

N 3 N ::= systems of nodes B 3 B ::= node components
0 inactive node P process
` : [B] single node S sensor
N1 | N2 composition B ‖ B composition

P ::= control processes
0 nil
〈E1, · · · , Ek〉. P intra-node output
〈〈E1, · · · , Ek〉〉 . L. P multi-output L⊆ L
(E1, · · · , Ej ; xj+1, · · · , xk). P input (with match.)
P1 + P2 summation
A(y1, . . . , yn) recursion
decrypt E as
{E1, · · · , Ej ; xj+1, · · · , xk}K0

in P
decryption (with match.)

(i; zi).P clear input from sensor i
({i; zi}K).P crypto input from sensor i

S ::= sensor processes E ::= terms
τ.S internal action v value
〈i, v〉. S ith output x variable
〈{i, v}K〉. S ith enc. output z sensor’s variable
A(y1, . . . , yn) recursion {E1, · · · , Ek}K0 encryption

f(E1, · · · , En) function appl.

Table 1. Syntax of IoT-LySa.

In the syntax of systems, 0 denotes the null inactive system; a single node
` : [B] is uniquely identified by a label ` ∈ L (which represents a node property
such as location). Node components B are obtained by the parallel composition
(through the operator ||) of control processes P , and of a fixed number of sensors
S. We assume that sensors are identified by an unique identifier i ∈ I`.

In the syntax of processes, 0 represents the inactive process (inactive compo-
nents of a node are all coalesced). The process 〈E1, · · · , Ek〉. P sends the tuple
E1, · · · , Ek to another process in the same node and then continues like P .
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The process 〈〈E1, · · · , Ek〉〉 . L.P sends the tuple E1, . . . , Ek to the nodes
whose labels are in L and evolves as P . The process (E1, · · · , Ej ; xj+1, · · · , xk). P
receives a tuple E′1, · · · , E′k: if the first j terms of the received message pairwise
match the first j terms of the input tuple, the message is accepted, otherwise is
discarded (see later for details). The operator ‖ describes parallel composition of
processes, while + denotes non-deterministic choice. An agent is a static definition
of a parameterised process. Each agent identifier A has a unique defining equation
of the form A(y1, . . . , yn) = P , where y1, . . . , yn are distinct names occurring free
in P . The process decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}K0

in P tries to decrypt
an encrypted value using the key K0, provided that the first j elements of the
decrypted term coincide with the terms Ej .

A sensor can perform an internal action τ or send an (encrypted) value v,
gathered from the environment, to its controlling process and continues as S. We
do not provide an explicit operation to read data from the environment but it
can be easily implemented as an internal action.

Finally, in the syntax of term, a value represents a piece of data (e.g. keys or
values read the environment). As said above, we have two kinds of disjoint vari-
ables: x are standard local variables, used as in π-calculus; while sensor variables
z belong to a node and are globally accessible within it. As usual, we require
that variables and names are disjoint. The encryption function {E1, · · · , Ek}K0

returns the result of encrypting values Ei for i ∈ [1, k] with the key K0. The term
f(E1, · · · , En) is the application of function f to n arguments; we assume given
a set of primitive aggregation functions, e.g. functions for comparing values.

Working Example We set a simple IoT system up to keep the temperature under
control inside a storehouse with perishable food (a big quadrangular room).
We install four sensors, one for each corner of the storehouse. Each sensor Si
periodically senses (by means of the function sensei()) the temperature and sends
it through a wireless communication to a control unit Pc in the same node N1.
The unit Pc computes the average temperature and checks if it is within accepted
bounds. If this is not the case, Pc sends an alarm through other nodes and the
Cloud. We want to prevent an attacker from intercepting and manipulating data
sent by sensors. A possible approach consists in exploiting the fact that sensors
on the same side should sense the same temperature, with a difference that can be
at most a given value ε. The control unit can easily detect anomalies and discard
data tailored by an attacker, comparing values coming from the sensors that
are on the same side of the room. But what happens if the attacker falsifies the
data sent by more than one sensor? A possible solution consists in enabling some
sensors (in our example S1 and S3) to use cryptography for obtaining reliable
data. Nevertheless, before adopting this solution we would like to evaluate it
by estimating its cost. The control process Pc in the node N1 reads data from
sensors, compares them and compute their average and sends them to the node
N2. The process Qc of N2 sends an alarm or an ok message to the node N3
depending on the received data, together with the average temperature. The
process Rc of N3 is an Internet service that waits for messages from N2 and
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handles them (through the internal action τ). The IoT-LySa specification of
the storehouse system follows:

N = N1 | N2 | N3 = `1 : [Pc ‖ (S0‖ S1‖ S2‖ S3)] | `2 : [Qc ‖ 0] | `3 : [Rc ‖ 0]
Pc = (0; z0). τ.({1; z1}K1 ).τ.(2; z2). τ.({3; z3}K3 ).τ.

〈〈cmp(z0, ..., z3), avg(z0, ..., z3)〉〉 . {`2}.τ.Pc
Qc = (true;xavg).〈〈ok, xavg〉〉 . {`3}.τ.Qc + (false;xavg).〈〈alarm, xavg〉〉 . {`3}.τ.Qc
Rc = (;wres, wavg).τ.Rc
Sm = 〈m, sensem()〉. τ.Sm m = 0, 2
Sj = 〈{j, sensej()}Kj 〉. τ.Sj j = 1, 3

The function cmp performs consistency checks, by comparing data coming from
insecure sensors with data from secure ones: it returns true if data are within
the established bounds, false otherwise. The function avg computes the average
of its arguments. We suppose that processes and sensors perform some internal
activities (τ -actions). Another possible solution consists in having just one sensor
that uses cryptography. This new system of nodes N̂ differs from the previous
one in the specification of the process P̂c in the first node:

P̂c = (0; z0). τ.({1; z1}K1 ).τ.(2; z2). τ.(3; z3). τ.
〈〈halfcmp(z0, z1), avg(z0, ..., z3)〉〉 . {`2}.τ.P̂c

where the comparison function halfcmp uses only two arguments. We expect
that this second solution is less expensive, and we apply our methodology to
formally compare the relative costs of the two solutions.

Enhanced Operational Semantics. To estimate cost, we give an enhanced reduc-
tion semantics following [2,6,7]. The underlying idea is that each transition is
enriched with an enhanced label θ, which records information about the transition.
Actually, we label transitions for communications and decryptions. For communi-
cations, we record the action (input or output) with the corresponding prefixes,
and the labels of the involved nodes. For decryption, we store the label of the
node performing the operation and information about the data. Note that in the
following we use the abbreviations out, in, dec, for denoting the communication
prefixes, the decryption constructs and the possible function calls f inside them.
We can obtain a standard semantics by simply removing the labels.

Definition 1. Given `, `O, `I , `D ∈ L, enhanced labels theta are defined as:

Θ 3 θ ::= 〈` {out}, ` {in}〉 internal secure communication
〈` out, ` in〉 internal communication
〈`O out, `I in〉 inter-nodes communication
{`D dec} decryption of a message

As usual, our semantics consists of the standard structural congruence ≡ on
nodes, processes and sensors and of a set of rules defining the transition relation.
Our notion of structural congruence ≡ is standard except for the following con-
gruence rule for processes that equates a multi-output with empty set of receivers
to the inactive process: 〈〈E1, · · · , Ek〉〉 . ∅.0 ≡ 0.
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Our reduction relation θ−→⊆ N ×N is defined as the least relation on closed
nodes, processes and sensors that satisfies a set of inference rules. Our rules are
quite standard apart from the five rules for communications shown in Tab. 2 and
briefly commented below. We assume the standard meaning for terms [[E]].

(Sensor-Com)

` : [〈i, vi〉. Si ‖ (i; zi). P ‖ B] 〈` out,` in〉−→ ` : [Si ‖ P{vi/zi} ‖ B{vi/zi}]

(Crypto-Sensor-Com)

` : [〈{i, vi}K〉. Si ‖ ({i; zi}K).P ‖ B] 〈` {out},` {in}〉→ ` : [Si ‖ P{vi/zi} ‖ B{vi/zi}]

(Intra-Com)∧k

i=1 vi = [[Ei]] ∧
∧j

i=1 [[Ei]] = [[E′
i]]

` : [〈E1, ..., Ek〉. P ‖ (E′
1, ..., E

′
j ;xj+1, ..., xk).Q ‖ B]

〈` out,` in〉→
` : [P ‖ Q{vj+1/xj+1, ..., vk/xk} ‖ B]

(Multi-Com)
`2 ∈ L ∧ Comp(`1, `2) ∧

∧k

i=1 vi = [[Ei]] ∧
∧j

i=1 [[Ei]] = [[E′
i]]

`1 : [〈〈E1, ..., Ek〉〉 . L.P11 ‖ BP ] | `2 : [(E′
1, ..., E

′
j ;xj+1, ..., xk).Q11 ‖ BQ]

〈`1 out,`2 in〉−→
`1 : [〈〈E1, ..., Ek〉〉 . L \ {`2}.P11 ‖ BP ] | `2 : [Q11{vj+1/xj+1, ..., vk/xk} ‖ BQ]

Table 2. Operational semantic rules for communication.

The rule (Sens-Com) is for communications among sensors and processes:
the variables used in the input are assumed global inside the node, in such a
way that sensors are considered as a shared data structure z1, · · · , zn. Therefore,
the substitution is performed in all the processes of the node. The rule (Crypto-
Sens-Com) is similar but it also requires that the receiving process successfully
decrypts the encrypted data sent by a sensor. The rule (Intra-Com) is for intra-
node communications. This construct implements also a matching feature: the
communication succeeds, as long as the first j values of the message match the
evaluations of the first j terms in the input. If this is the case, the result of
evaluating each Ei is bound to each xi.

The rule (Multi-Com) implements the inter nodes communication: the com-
munication between the node labelled `1 and the node `2 succeeds, provided that
(i) `2 is in the set L of receivers, (ii) the two nodes are compatible according to
the compatibility function Comp, and (iii) the matching mechanism succeeds. If
this is the case, the sender removes `′ from the set of receivers L, while in the sec-
ond node, the receiving process continues bounding the result of each Ei to each
variable xi. Outputs terminate when all the nodes in L have received the message
(see the congruence rule). Note that point-to-point communication amounts to



The cost of securing IoT communications 169

the case in which L is a singleton. The compatibility function Comp defined over
node labels is used to model constraints on communication, e.g. proximity, with
Comp(`1, `2) that yields true only when the two nodes `1, `2 are in the same
transmission range. Of course, this function could be enriched for considering
other notions of compatibility.

Hereafter, we assume the standard notion of transition system. Intuitively,
it is a graph, in which systems of nodes form the nodes and (labelled) arcs
represent the possible transitions between them. As will be clearer in the next
section, we will only consider finite state systems, because finite states have an
easier stochastic analysis. Note that this does not mean that the behaviour of
such processes is finite, because their transition systems may have loops.

Example (cont’d) Back to our example, consider the following run of the first
system where, for brevity, we ignored their internal actions τ

N
θ0−→ N ′

θ1−→ N ′′
θ2−→ N ′′′

θ3−→ N ′′′′
θ4i−→

{
N ′′′′′0

θ50−→ N if i = 0
N ′′′′′1

θ51−→ N if i = 1

the systems of nodes N ′, N ′′, N ′′′, N ′′′′, N ′′′′′ are the intermediate ones reached
from N during the computation and the labels θj annotate the jth transi-
tion (θji depending on the branch of the summation). In the run, fully spec-
ified below, the sensors of N1 send a message to the process Pc, which checks
the received data and sends the checking result to N2. We denote with P ′c
(Q′c, R′c, resp.) the continuations of Pc (Qc, Rc, resp.) after the first input pre-
fixes, with vcomp the value cmp(v0, ..., v3), with vavg the value avg(v0, ..., v3),
and with vresi (with i = 0, 1) the value ok (alarm respectively), depending
on which branch of the summation is chosen. The evolution of the second
system N̂ is analogous to the one of N : the transition labels are such that
θ̂4i = 〈`1〈〈halfcmp(v0, v1), avg(v0, · · · , v3)〉〉, `2(vbool;xavg)〉 and θ̂l = θl for l 6= 4i
(the transition labels θl are presented below, after the run of N).

N = `1 : [(0; z0). P ′
c ‖ P ‖ (〈0, sense0()〉. τ.S0‖ S1‖ S2‖ S3)] | N2 | N3

θ0−→
N ′ = `1 : [P ′

c{0/z0} ‖ (τ.S0‖ S1‖ S2‖ S3)] | N2 | N3
θ1−→ θ2−→ θ3−→

N ′′′′ = `1 : [P ′
c{0/z0, 1/z1, 2/z2, 3/z3} ‖ (S0‖ S1‖ S2‖ S3)] | N2 | N3 =

`1 : [〈〈vcomp, vavg〉〉 . {`2}.τ.Pc ‖ (S0‖ S1‖ S2‖ S3)] |
`2 : [(true;xavg).〈〈ok, xavg〉〉 . {`3}.τ.Qc +

(false;xavg).〈〈alarm, xavg〉〉 . {`3}.τ.Qc] | N3
θ4i−→

N ′′′′′
i = `1 : [Pc ‖ P ‖ (S0‖ S1‖ S2‖ S3)] |

`2 : [Q′
c{vavg/xavg}) ‖ 0] |`3 : [(;wres, wavg).τ.Rc ‖ 0] =

`1 : [Pc ‖ P ‖ (S0‖ S1‖ S2‖ S3)] |
`2 : [〈〈vresi , vavg〉〉 . {`3}.τ.Qc ‖ 0] | `3 : [(;wres, wavg).τ.Rc ‖ 0] θ5i−→

N = `1 : [Pc ‖ P ‖ (S0‖ S1‖ S2‖ S3)] |`2 : [Qc‖0] |`3 : [R′
c{vresi/wres, vavg/wavg}‖0]

θ0 = θ2 = 〈`1〈j, vj〉, `1(j; zi)〉
θ1 = θ3 = 〈`1〈{j, vj}Ki〉, `1({j; zj}Ki )〉
θ4i = 〈`1〈〈cmp(v0, · · · , v3), avg(v0, · · · , v3)〉〉, `2(vbool;xavg)〉
θ5i = 〈`2 〈〈vresi , vavg〉〉, `3(wres, wavg)〉
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3 Stochastic Semantics

We now show how to generate a Continuous Time Markov Chains (CTMC) from
a transition system (see [17] for more details). First, we introduce functions
over the enhanced labels to associate costs to transitions. Here, the cost of a
system is specified in term of the time spent for transitions, and it depends on the
performed action as well as on the involved nodes. However, we can easily treat
other quantitative properties, e.g. energy consumption. Intuitively, cost functions
define exponential distributions, from which we compute the rates at which a
system evolves and the corresponding CTMC. Then, to evaluate the performance
we calculate the stationary distribution of the CTMC and the transition rewards.

Cost Functions. Our cost functions assign a rate to each transition with label ϑ.
To define this rate, we suppose to execute each action on a dedicated architecture
that only performs that action, and we estimate the corresponding duration. To
model the performance degradation due to the run-time support, we introduce
a scaling factor for r for each routine called by the implementation under con-
sideration. Here, we just propose a format for these functions, with parameters
that depend on the nodes to be instantiated on need. For instance, in a node
where the cryptographic operations are performed at very high speed (e.g. by a
cryptographic accelerator), but with a slow link (low bandwidth), the time will
be low for encryptions and high for communication; vice versa, in a node offering
a high bandwidth, but poor cryptography resources.

Technically, we interpret costs as parameters of exponential distributions
F (t) = 1 − e−rt, with rate r and t as time parameter (general distributions
are also possible see [18]): the transition rate r is the parameter that identifies
the exponential distribution of the duration times of the transition, as usual in
stochastic process algebras (e.g. [8]). The shape of F (t) is a curve that grows
from 0 asymptotically approaching 1 for positive values of its argument t. The
parameter r determines the slope of the curve: the greater r, the faster F (t)
approaches its asymptotic value. The exponential distributions that we use enjoy
the memoryless property, i.e. the occurrence of a new transition does not depend
on the previous ones. We also assume that transitions are time homogeneous (the
transitions enabled in a given state cannot be disabled by the flow of time).

We define in a few steps the function that associates rates with the (enhanced
labels of) communication and decryption transitions. For the sake of simplicity, we
ignore the costs for other primitives, e.g. constant invocation, parallel composition,
summation, τ actions (see [17] for a complete treatment); we further neglect the
sensor cost of sensing from the environment We need the auxiliary function
fE : E → IR+ that estimates the effort needed to manipulate terms.

• fE(v) = size(v)
• fE({E1, . . . , Ek}K0) = fenc(fE(E1), ..., fE(E1), crypto_system, kind(K0))

The size of a value v matters. For an encrypted term, we use the function fenc,
which depends on the terms to encrypt, on the used crypto-system and on the
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kind (short/long, short-term/long-term) of the key. The function $α : A → IR+

assigns costs to I/O and decryption prefix actions α ∈ A.

• $α(〈E1, . . . , Ek〉) = fout(fE(E1), ..., fE(E1), bw)
• $α((E1, . . . , Ej ;xj+1, . . . , xk)) = fin(fE(E1), ..., fE(Ej),match(j), bw)
• $α(decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0) =
fdec(fE(E), crypto_system, kind(K0),match(j))

the send and receive primitives. Besides the implementation cost due to their
own algorithms, the functions above depend on the bandwidth of the channel
(represented by bw), on the cost of the exchanged terms (computed by fE), and
on the nodes involved in the communication. Moreover, the inter-node commu-
nication depends on the proximity-relation (e.g. the transmission range between
nodes), represented here by the function f<>(`O, `I). Also, the cost of an input
depends on the number of required matchings (represented by match(j)). Finally,
the function fdec represents the cost of a decryption, whose cost is similar to the
one for encryption, with the additional cost of matchings. Finally, the function
$ : Θ → IR+ associates rates with enhanced labels.

• $(〈`O out, `I in〉) = f<>(`O, `I) ·min{$α(out, `O), $α(in, `I)}
• $〈` dec〉 = $α(dec, `)

As mentioned above, the two partners independently perform some low-level
operations locally to their nodes, labelled `O and `I . Each label leads to a delay
in the rate of the corresponding action. Thus, the cost of the slower partner
corresponds to the minimum cost of the operations performed by the participants
in isolation. Indeed the lower the cost, i.e. the rate, the greater the time needed
to complete an action and hence the slower the speed of the transition (and the
slower F (t) = 1− e−rt approaches its asymptotic value).

Note that we do not fix the actual cost function: we only propose for it a
set of parameters to reflect some features of an idealised architecture. Although
very abstract, this suffices to make our point. A precise instantiation comes with
the refinement steps from specification to implementations as soon as actual
parameters become available.

Example (cont’d) We now associate a rate to each transition in the transition
system of the system of nodesN , justN for brevity. To illustrate our methodology,
we assume that the coefficients due to the nodes amount to 1. We instantiate the
cost functions given above, by using the following parameters in the denominator:
(i) e and d for encrypting and for decrypting; (ii) s and r for sending and for
receiving; (iii) m for pattern matching; and (iv) f for the application of the
aggregate function f , whose cost is proportional to the number of its arguments.
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• fE(a) = 1
• fE({E1, . . . , Ek}K0) = e

s ·
∑k
i=1 fE(Ei) + 1

• $α(〈E1, . . . , Ek〉) = 1
s·

∑i

i=1
fE(Ei)

• $α((E1, . . . , Ej ;xj+1, . . . , xk)) = 1
r·k+m·j

• $α(decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}K0) = 1
d·k+m·j

• $α(f(E1, · · · , Ek)) = 1
f·k

These parameters represent the time spent performing the corresponding action
on a single term. Intuitively, the greater the time duration is, the smaller the rate.
Since transmission is usually more time-consuming than reception, the rate of a
communication is that of output. The rates of the transitions of N and N̂ are
cj = $(θj) and ĉj = $(θ̂j), and cji = $(θji) and ĉji = $(θ̂ji) (j ∈ [4, 5], i ∈ [0, 1]).

c0 = c2 = 1
2s , c1 = c3 = 1

2e+s ,

c4i = 1
8f+2s c5i = 1

s

ĉ0 = ĉ2 = ĉ3 = 1
2s , ĉ1 = 1

2e+s
ĉ4i = 1

6f+2s ĉ5i = 1
s

For instance, the rate of the second transition is: c1 = $(θ1) = 1
2e+s , where

1
2e+s = min{ 1

2e+s ,
1

2d+r+m}. Note that our costs can be further refined; we could
e.g. make the transmission rate also depend on the distance between the nodes,
when non internal to a node.

Stochastic Analysis Now, we transform the transition system N into its corre-
sponding CTMC(N), by using the above rates. Afterwards, we can calculate
the actual performance measures, e.g. the throughput or utilisation of a certain
resource (see [16] for more details on the theory of stochastic processes).

Actually, the transition rate q(Ni, Nj) at which a system jumps from Ni to
Nj is the sum of the single rates ϑk of all the possible transitions from Ni to
Nj . Given a transition system N , the corresponding CTMC has a state for each
node in N , and the arcs between states are obtained by coalescing all the arcs
with the same source and target in N . Recall that a CTMC can be seen as
a directed graph and that its matrix Q, the generator matrix, (apart from its
diagonal) represents its adjacency matrix. Note that q(Ni, Nj) coincides with
the off-diagonal element qij of the generator matrix Q. Hence, hereafter we will
use indistinguishably CTMC and its corresponding Q to denote a Markov chain.
More formally, the entries of Q are defined as follows.

qij =


q(Ni, Nj) =

∑
θk

$(θk) if i 6= j ∧ Ni
θk−→ Nj

−
n∑

j=0,j 6=i
qij if i = j

Performance measures are usually obtained by computing the stationary distribu-
tions of CTMCs, since they should be taken over long periods of time to be signif-
icant. The stationary probability distribution of a CTMC is Π = (X0, . . . , Xn−1)
s.t. ΠTQ = 0 and

∑n
i=0 Xi = 1, which uniquely exists if the transition system

is finite and has a cyclic initial state.
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Example (cont’d) Consider the transition system corresponding to N that is,
as required above, finite and with a cyclic initial state. We derive the following
generator matrix Q1 of CTMC(N) and the corresponding stationary distribution
Π1, where C = 4s + 2e + 2f, by solving the system of linear equations ΠT

1 Q1 =
0 and

∑n
i=0 Xi = 1, where Π1 = (X0, · · · , X6). Similarly, we can derive the

generator matrix Q̂′1 and the corresponding stationary distribution Π̂1 for the
transition system corresponding to N̂ , where Ĉ = 9s + 2e + 3f.

Q1 =


−c0 c0 0 0 0 0 0

0 −c1 c1 0 0 0 0
0 0 −c2 c2 0 0 0
0 0 0 −c3 c3 0 0
0 0 0 0 −(c40 + c41) c40 c41
c50 0 0 0 0 −c50 0
c51 0 0 0 0 0 −c51


Π1 =

[
s
C ,

(2e+s)
2C , s

2C ,
(2e+s)

C , (4f+s)
2C , s

4C ,
s
4C

]
Π̂1 =

[
2s
Ĉ ,

(2e+s)
Ĉ , 2s

Ĉ ,
2s
Ĉ ,

(3f+s)
Ĉ , s

2Ĉ ,
s
2Ĉ

]
To define performance measures for a system N , we define the corresponding

reward structure, following [9,8]. Usually, a reward structure is a function that
associates a reward with any state passed through in a computation of N . We
compute rewards from rates of transitions [17]. To measure the throughput of a
system, i.e. the amount of useful work accomplished per unit time, a reasonable
choice is to use as nonzero reward a value equal to the rate of the corresponding
transition. The reward structure of a system N is a vector of rewards, whose size
amounts to the number of N states. By looking at the stationary distribution and
varying the reward structure, we can compute different performance measures.
The total reward is obtained by summing the values of the stationary distribution
Π multiplied by the corresponding reward structure ρ.

Definition 2. Given a system N , let Π = (X0, . . . , Xn−1) be its stationary
distribution and ρ = ρ(0), ..., ρ(n− 1) be its reward structure. The total reward
of N is computed as R(N) =

∑
i ρ(i) ·Xi.

Example (cont’d) To evaluate the relative efficiency of the two systems of nodes,
we compare the throughput of both, i.e. the number of instructions executed per
time unit. The throughput for a given activity is found by first associating a
transition reward equal to the activity rate with each transition. In our systems
each transition is fired only once. Also, the graph of the corresponding CTMC is
cyclic and all the labels represent different activities. Therefore the throughput
of all the activities is the same, and we can freely choose one of them to compute
the throughput of N . Thus we associate a transition reward equal to its rate with
the last communication and a null transition reward with all the others communi-
cations. The total reward R(N) of the system then amounts to 1

2(8s+4e+4f) , while
R(N̂) to 1

2(9s+2e+3f) . By comparing the two throughputs, it is straightforward to
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obtain that R(N) < R(N̂), i.e. that, as expected, N̂ performs better. To use this
measure, it is necessary to instantiate our parameters under various hypotheses,
depending on several factors, such as the network load, the packet size, and so on.
Furthermore, we need to consider the costs of cryptographic algorithms and how
changing their parameters impact on energy consumption and on the guaranteed
security level (see e.g. [15]).

4 Conclusions

In the IoT scenario security is critical but it is hard to address in an affordable
way due to the limited computational capabilities of smart objects. We have
presented the first steps towards a formal framework that supports designers in
specifying an IoT system and in estimating the cost of security mechanisms. A
key feature of our approach is that quantitative aspects are symbolically repre-
sented by parameters. Actual values are obtained as soon as the designer provides
some additional information about the hardware and the network architecture
and the cryptographic algorithms relative to the system in hand. By abstractly
reasoning about these parameters designers can compare different implementa-
tions of the same IoT system, and choose the one that ensures the best trade-off
between security guarantees and their price. In practice, we considered a subset
of the process algebra IoT-LySa [4] and we adapted the technique in [1] to
determine the costs of using/not using cryptographic measures in communica-
tions and to reason about the cost-security trade-offs. In particular, we defined
an enhanced semantics, where each system transition is associated with a rate
in the style of [7,17]. From the rates we derive a CTMC, through which we
could perform cost evaluation, by using standard techniques and tools [19,22].
As future work, we plan to assess our proposal considering a more complete case
study and considering different metrics as time, network bandwidth and energy
consumption.

Our approach follows the well-established line of research about performance
evaluation through process calculi and probabilistic model checking (see [10,11]
for a survey). To the best of our knowledge, the application of formal methods to
IoT systems or to wireless or sensor networks have not been largely studied and
only a limited number of papers in the literature addressed the problem from
a process algebras perspective, e.g. [13,12,14,21], to cite only a few. In [5] the
problem of modelling and estimating the communication cost in an IoT scenario
is tackled through Stochastic Petri Net. Their approach is similar to ours: they
derive a CTMC from a Petri Net describing the system and proceed with the
performance evaluation by using standard tools. Differently from us, they focus
not on the cost of security but only on the one of communication (they do not use
cryptographic primitives). In [20] a performance comparison between the security
protocols IPSec and DTLS is presented, in particular by considering their impact
on the resources of IoT devices with limited computational capabilities. They
modified protocols implementations to make them properly run on the devices.
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An extensive experimental evaluation study on these protocols shows that both
their implementations ensure a good level of end-to-end security.
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Abstract. A concurrent extension of the recent COP language MLCoDa
is presented. We formalise its operational semantics and we propose a run
time verification mechanism that enforces a notion of non-interference
among concurrent threads. More precisely, this mechanism prevents an
application from modifying the context so as to dispose some resources
or to contradict assumptions upon which other applications rely.

1 Introduction

Modern software have to run in highly dynamic and open heterogeneous environ-
ment, often referred as the context. The context abstracts the communication
infrastructure and the available resources, so as to make them seem less heteroge-
neous, unlimited and fully dedicated to their users. Programming these systems
thus requires new programming language features and effective mechanisms to
deal with context-awareness, i.e. sensing the context, reacting and properly adapt-
ing the program behaviour to changes of the actual context. Recently the last
two authors proposed MLCoDa a two-component Context-oriented Programming
(COP) language [10]. It has a logical constituent for specifying and manipulating
the context and a functional one for computing. Separation of concerns drove
the design choices. Indeed, one specifies the context and its evolution, using its
own specific mechanisms and rules, that are typically different from those used
in programming applications. Designing a context requires skills different from
those needed for applications, and it is usually programmed by requirements en-
gineers [19]. The declarative approach allows requirements engineers to express
what information the context has to include, leaving to the virtual machine how
this information is actually collected and managed.

In MLCoDa a context is a Datalog knowledge base [15]. Thus, verifying whether
a given property holds in the context simply consists in querying a Datalog goal.
During the needed deductions the relevant information is also retrieved. The
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choice of a functional language was driven by the popularity of this paradigm
(see e.g. F#, Scala), by its formal elegance and the conciseness of its programs.
The first mechanism takes care of those program variables that assume different
values depending on the different properties of the current context. The notion of
context-dependent binding makes that explicit. The second one extends standard
behavioural variations, that are chunks of code that are dynamically activated
depending on the context, so adapting the behaviour of the program. In MLCoDa
behavioural variations are a first-class construct, so they can be referred to by
identifiers, and passed to and returned by functions. This helps in programming
dynamic adaptation patterns, as well as reusable and modular code. Also, a
behavioural variation can be supplied by the context, and then composed with
existing ones.

We study these aspects from a basic point of view, in [10] a single application
within a context was considered. MLCoDa was equipped with an operational
semantics which provided us with the basis for a prototypical implementation
in F# [5]. Since adaptive applications may misbehave because at design time
an unknown environment was not considered, a static analysis ensures that this
kind of run time errors never occur, e.g. because the actual hosting environment
lacks a required capability. The analysis is performed in two phases: a type
and effect system (at compile time) and a Control Flow Analysis (at load time).
Type-checking a program also computes an effect that over-approximates the
capabilities required by an application at run time. When entering a new context,
before running the program, this abstraction is exploited to check that the actual
context, and those resulting from its evolution, support the capabilities required
by the application. Note that this last analysis can only be done at load time,
because at compile time the possible hosting contexts are still unknown.

A first extension of MLCoDa with concurrency is in [11], where there is a
two-threaded system: the context and the application. The first virtualizes the
resources and the communication infrastructure, as well as other software com-
ponents running within it. Consequently, the behaviour of a context, describing
in particular how it is updated, abstractly accounts for all the interactions of the
entities it hosts. The other thread is the application and the interactions with
the other entities therein are rendered as the occurrence of asynchronous events
that represent the relevant changes in the context. The semantics of [11] also
offered a way of preventing a context change to affect the validity of a choice of
a behavioural variation. Also a recovery mechanism is triggered at need.

Here we extend this approach by explicitly describing many applications
that execute in a context, and possibly exchange information through it and
asynchronously update it. The well known problem of interference now arises,
because one thread can update the context possibly making unavailable some
resources or contradicting assumptions that another thread relies upon. Classical
techniques for controlling this form of misbehaviour, like locks, are not satisfying,
because they contrast with the basic assumption of having an open world where
applications appear and disappear unpredictably, and freely update the context.
However, application designers are only aware of the relevant fragments of the
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context and cannot anticipate the effects a change may have. Therefore, the
overall consistency of the context cannot be controlled by applications.

The novelty of the semantics proposed here consists in addressing this problem
through a run time verification mechanism. We assume our applications be
typed as in [10], and the resulting effect, called history expression is carried
on by the code. Roughly, a history expression collects the sequence of context
modifications that an application may perform, as well as the Datalog goals
it queries. Intuitively, the effects of the running applications are checked to
make sure that the execution of the selected behavioural variation will lead no
other application to an inconsistent state, e.g. by disposing a shared resource.
Dually, also the other threads are checked to verify that they cause no harm to
the application entering in a behavioural variation. Differently than in [10], the
verification is not done at load time, but it occurs at run time when a behavioural
variation is about to be evaluated. All the checks sketched above are performed
on the effects computed at compile time using the Control Flow Analysis of [10].
Note that performing the verification mechanism at load time will result is a
huge loss of precision of the analysis due to the inherent non-determinism. At the
moment, we designed no recovery mechanisms for when a possible inconsistency
is predicted, and we only leave stuck the application responsible for that.

Structure of the paper The next section intuitively presents our COP language
and the verification mechanism through an example. In Section 3 we formally
define the syntax and the operational semantics of this extension of MLCoDa.
The last section concludes and discusses some related work.

2 An example: competing for visors

Here we elaborate on the example of [10] describing a museum guide. First, we
briefly recall the features of the functional component of MLCoDa, omitting the
Datalog constituent that is fully standard. We refer the reader to [10] for a full
description of the language.

The original functional component of MLCoDa provides two main mecha-
nisms for adaptation. The first is context-dependent binding through which a
programmer declares variables whose values depend on the context. The con-
struct dlet x = e1 when G in e2 means that the variable x (called parameter
hereafter) may denote different objects, with different behavior depending on the
different properties of the current context, checked by evaluating the goal G. If
the goal G is true in the current context, the variable x is bound the result of
evaluation of the expression e1.

The second mechanism is based on the notion of behavioural variations. Basi-
cally, it is a list of pairs (x){G1.e1, . . . ,Gn.en}, similar to a case statement, that
alters the control flow of applications according to which goal holds in the context,
so as to dynamically adapt the running application. Behavioural variations are
similar to functions: they take arguments (e.g. x) and are (high-order) values
so facilitating programming dynamic adaptation patterns. To run a behavioural
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variation we need to apply it through the application operator #(bv, v) where
bv = (x){G1.e1, . . . ,Gn.en}. The application triggers a dispatching mechanism
that visits the cases in textual order and selects the first expression ei whose
goal Gi holds; then ei evaluates in a environment with a new binding between x
and v. If no goal holds then the application cannot adapt to the context and a
run time error occurs. The interaction with the Datalog context is not limited to
queries, but one can change the knowledge base through tell/retract operations
that add/remove facts.

We illustrate now how the linguistic extensions to MLCoDa we are proposing
help in designing an adaptive museum guide application. To make our point, it
suffices to consider two concurrent applications that are hosted in the shared
context offered by the museum intranet.

Each visitor registers at entrance and gets credentials to access the museum
intranet and to download the guide application to his smartphone. This guide
adapts to the device (e.g. enabling/disabling particular features like HD videos
or NFC communication) and to the user’s preferences (e.g. accessibility options
for blind or deaf people) and has the ability to interact with (some of) those
exhibits of the museum which are interactive. Differently than in [10] we here
explicitly consider applications that are deployed at an interactive exhibit and
reply to user’s questions, e.g. about the author of the exhibit.

Since the museum resources can typically be concurrently accessed by a
limited number of users, the activities performed by the guide applications and
those done by the context itself have to be coordinated.

Here we focus on the operations performed by the guide applications to access
the shared interactive exhibits. We assume that applications communicate with
a central server; and as in [11] that the shared context provides applications with
a communication infrastructure accessible through the tell/retract operations
that update the context, as well as through suitable remote procedure calls
(RPCs).

2.1 The context

Abstractly the context could be thought as a heterogeneous collection of data
coming from different sources and having different representations. As we said,
the context in MLCoDa is a knowledge base implemented as a Datalog program,
i.e. a set of facts that predicate over a possibly rich data domain, and a set of
logical rules to deduce further implicit properties of the context itself. Below, we
briefly introduce some aspects of the context of the museum where the multimedia
guide is plugged in.

Suppose we have the museum context presented in [10], that includes informa-
tion about the user profiles, their device capabilities, the ticketing policies, access
points to the intranet etc. Here we enrich the museum context with some facts
about the exhibits, e.g. the following fact declares that exhibit x is interactive:

is_interactive (x)
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A specific exhibit can interact with a visitor through a virtual reality visors that
plays a video. This feature can be expressed in the context by the following fact

play_video (x, visor) :-
is_interactive (x), has_visors (x,visor)

Acquiring a visor requires to check if it is available, i.e. that the following Datalog
goal holds

← ¬busy(x, visor )

If this is the case, the application can lock the visor by inserting the fact
busy(x, visor) in the context through the tell construct. Symmetrically, re-
leasing the visor is done by removing the fact through a retract.

2.2 The guide and the exhibit application

We now show the relevant code concerning the interaction among the multimedia
guide, the exhibit application and the shared environment. For readability we use
a sugared syntax of our extended MLCoDa which will be formally introduced in
Section 3. Assume that a new GUI element in the guide is enabled when data are
downloaded from the interactive exhibit. Once active it allows a user to visualize
the data of the exhibit.

Suppose that a user U wants to interact with the virtual reality exhibit ie
with two visors v1 and v2. As expected U can acquire a visor if it is available and
cannot if in use until it is released. The following code implements the above:

fun interact () =
let get_visor = (){
← ¬busy(ie , v1).

showMessage " Please use the first visor "
enable_first ()
← busy(ie , v1), ¬busy(ie , v2).

showMessage " Please use the second visor"
enable_second ()
← busy(ie , v1), busy(ie , v2 ).

showMessage " Please wait ..."
}
in #( get_visor , ())

In the code we define the behavioural variation get_visor with no argument that
queries the context to get information on availability of visors. The behavioural
variation is applied in the last line through the # construct. Each case of get_visor
is driven by a goal, e.g. ¬busy(ie, v1). The application interacts with visors via
RPCs.

In the exhibit the implementation of the RPC function enable_first is
straightforward:

fun enable_first () =
tell busy(exhibitID ,v1)
(* Code for interacting with the user *)
retract busy(exhibitID ,v1)
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where exhibitID identifies the current exhibit; the code for the function
enable_second is analogous.

2.3 Executing the guide

Assume Alice is in front of one of the interactive exhibits and wants to play with
it. She taps on the relevant button to launch the function interact, causing the
behavioural variation get_visor to run. If the visor v1 is available, the first goal
succeeds and the RPC enable_first is invoked.

Now Bob arrives and wants to interact with the same exhibit. Three differ-
ent situation may occur, depending on the execution point reached by Alice’s
application when Bob starts to execute the behavioural variation get_visor:

– Alice has still to execute tell(busy(v1)) and thus also Bob could get the visor
v1. The runtime of MLCoDa first inspects the history expression H associated
with Bob at compile time, and discovers the potential damage to Alice. Indeed
H records that Bob will change the context through tell busy(exhibitID,v1),
so falsifying the goal ¬busy(ie, v1) that Alice has just checked. In this case,
the runtime prevents Bob from performing the harmful operation;

– Alice completed the execution of tell(busy(v1)) and is interacting with the
exhibit. Then Bob will simply find the visor v1 busy and the second case of
his behavioural variation will be selected;

– Alice has released the visor v1 through retract(busy(v1)) and so Bob can
acquire it.

As intuitively described above, the extended runtime support of MLCoDa em-
beds a verification mechanism at run time, so enforcing a sort of non-interference
property among threads. Of course, the simple situation above can be extended
to the case with many visitors interacting with the same exhibit.

3 Regulating concurrency in MLCoDa

This section presents our extension of MLCoDa with concurrency. As in [10] the
context provides applications with information and resources they need. Here,
the context works also as a shared memory through which applications inter-
act. Additionally, our semantics makes sure that when an application modifies
the context, it falsifies no hypothesis that drove the selection of the running
behavioural variations of other applications.

Syntax The Datalog part is standard: a program is a finite set of (ground) facts
and clauses. As defined in [8], we assume that each program is safe and stratified,
so negation is allowed.

The functional part inherits most of the ML constructs. In addition to the
usual ones, our values include Datalog facts F and behavioural variations. More-
over, we introduce the set x̃ ∈ DynV ar of parameters, i.e., variables assuming
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values depending on the properties of the running context; while x, f ∈ V ar are
standard identifiers, with the proviso that V ar ∩ DynV ar = ∅. The syntax of
MLCoDa follows:

V a ::=Gl.e | Gl.e, V a

v ::=c | λfx.e | (x){V a} | F
e ::=v | x | x̃ | e1 e2 | if e1 then e2 else e3 | letx = e1 in e2 |

dlet x̃ = e1 whenGl in e2 | tell(e1)l | retract(e1)l | #(e1, e2) | becG

The novelties w.r.t. [10] are that the goals of behavioural variations (x){V a} and
of the context dependent binding dlet have labels l ∈ Lab to link them with
their abstract counterparts in history expressions (see below). These labels are
mechanically attached (in the abstract syntax tree) and uniquely identify sub-
expressions. They do not alter the semantics of [10]: at run time, the first goal
Gl

i satisfied by the context determines the expression ei to be run (dispatching).
Also the tell/retract constructs, which insert/remove facts from the context,
carry labels. The application of a behavioural variation #(e1, e2) which applies e1
to its argument e2 is the same as in [10]: the dispatching mechanism is triggered
to query the context and to select from e1 the expression to run. In the formal
development we record the goal selected by the dispatching mechanism through
the auxiliary expression becG.

Semantics We assume that our systems are made of some expressions running
concurrently in a context C ∈ Context. Here we inherit the standard top-down
semantics [8] for Datalog under the Closed World Assumption to deal with
negation. We write C � Gwith θ when the goal G, under a ground substitution θ,
is satisfied in the context C. The concurrent semantics of a system is defined by a
hierarchy of three SOS transition systems. The first one is for expressions with no
free variables, but possibly with free parameters, thus allowing for openness. It is
a slight modification of the one in [10], where the environment ρ : DynVar → Va
maps parameters to variations Va. A first novelty is that transitions are labelled
to record the actions performed (irrelevant labels will be omitted). For example
we have the following axiom that specifies how the fact F is added to the context
C. It also records where this happens through the label that identifies the specific
tell responsible for that. This information will be used later on to link the actual
code with its history expression, computed by the type and effect system, and it
helps the verification made at run time.

ρ ` C, tell(F )l l−→ C ∪ {F}, ()
Tell2

A second novelty concerns the rules that query the context. Through the dis-
patching mechanism (see below), we detect a case e of a behavioural variation
which will be selected and run (suitable instantiated). Also here the transition
records the label ` of the goal G satisfied, for future use. Additionally, the goal
G indexes the selected case, giving raise to the auxiliary expression becG. Indeed,
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G has to always hold along the execution of e, until it reduces to a value v; in
other words, becG reduces to v.

ρ(x̃) = Va dsp(C, Va) = (e, {−→c /−→y }, Gl)

ρ ` C, x̃ l−→ C, be{−→c /−→y }cG
Dyvar

where dispatching is essentially the same of [10]:

dsp(C, (Gl.e,Va)) =
{

(e, θ,Gl) if C � Gwith θ

dsp(C, Va) otherwise

Also the rules for behavioural variation applications are modified similarly. Labels
are preserved by the inference rules.

The second level provides the third one with the relevant information to
guarantee that no applications modify a resource needed by another one. To do
that, we exploit the behavioural abstraction of the application computed by the
type and effect system of [10] in order to perform run time checks. We recall
from [10] the syntax of the abstractions, called history expressions H ∈ H, that
here carry labels ` ∈ L̂ab, for simplicity disjoint from Lab.

H ::= ε | h | µh.H | tell F ` | retract F ` | H1 +H2 | H1 ·H2 | ∆
∆ ::= ask G`.H ⊗ ∆ | fail

History expressions abstractly represent the activities performed: tell/retrect are
obvious, µh.H is for recursion, + abstracts conditionals, · sequential compositions
and∆ represents the dispatching mechanism. As in [4], our type and effect system
associates with an expression e a (standard) type, an effect H and a function Λ
that records the correspondence of labels ` in H with those in e. The semantics
of history expression is trivially extended to take care of labels.

There are three rules in the second level. The first follows:

∅ ` C, e l−→ C ′, e′ C,H →∗ C,H ′′ `−→ C ′, H ′

C, e : (H,ω)→ C ′, e′ : (H ′, ω ∧ Ĝ)
Λ(`) = l

where Ĝ =
{
G if ask G`.H is a sub-history of H
true otherwise

We write e : (H,ω), when H is the abstraction of e and ω is the conjunction of
all the goals (holding in C) of the behavioural variations still in execution. The
case Ĝ = true holds when l labels a tell or a retract.

The second rule governs the termination of a behavioural variation and the
elimination of the relevant goal:

∅ ` C, bvcG → C, v

C, e : (H,ω ∧G)→ C, v : (H,ω)
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The third rule considers the case when the context does not change (we do
not track the changes in H):

∅ ` C, e→ C, e′

C, e : (H,ω)→ C, e′ : (H,ω)

The top-level transition system takes care of the (interleaved) concurrent
behaviour of systems. Here we assume the standard congruences of ‖, the parallel
operator, e.g. commutativity. The first rule of this level is

C, e0 : (H0, ω0)→ C, be′0cG : (H ′0, ω0 ∧G) α1 α2

C, ‖n
i=1 ei : (Hi, ωi) ‖ e0 : (H0, ω0)→

C, ‖n
i=1 ei : (Hi, ωi) ‖ be′0cG : (H ′0, ω0 ∧G)

where α1 and α2 are the following conditions:

α1 = ∀C ′′s.t. C,H0 →∗ C ′′, H ′′0 . C ′′ |=
n∧

i=1
ωi

α2 = ∀i ∈ [1, n]∀C ′′s.t. C,Hi →∗ C ′′, H ′′i . C ′′ |= ω0 ∧G

The first condition says that no actions of e0 will falsify any of the goals of the
ei. Symmetrically, the second one guarantees that the goals of e0 will hold along
the execution of the other threads.

There is a rule for when the context changes because of a tell/retract:

C, e0 : (H0, ω0)→ C ′, e′0 : (H ′0, ω0) α1 α2

C, ‖n
i=1 ei : (Hi, ωi) ‖ e0 : (H0, ω0)→ C ′, ‖n

i=1 ei : (Hi, ωi) ‖ e′0 : (H ′0, ω0)
C 6= C ′

The last rule is for when the context does not change, and no violations may
then occur

C, e0 : (H0, ω0)→ C, e′0 : (H0, ω0)
C, ‖n

i=1 ei : (Hi, ωi) ‖ e0 : (H0, ω0)→ C, ‖n
i=1 ei : (Hi, ωi) ‖ e′0 : (H0, ω0)

The mechanism specified by the last two inference rules prevents all the applica-
tions running concurrently to misbehave so causing adaptivity errors each other.
The properties of the context and the resources acquired by an application in
order to execute a behavioural variation are guaranteed to hold until the be-
havioural variation itself is not completed, regardless of any update made by
other applications. The conditions α1 and α2 are crucial for performing these
checks at run time. These conditions can be verified through the control flow
analysis of [10]. Essentially, exploiting the history expressions Hi and H0 the
analysis results in a graph G that describes the possible evolutions of the context
C. Technically, the graph G is obtained as solution of a set of constraints following
the Flow Logic approach [16]. Very roughly, these constraints express how a tell or
a retract inside a history expression modifies a context into a new one. Note that
there this static analysis is done at load time, while here it has to be performed at
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run time, because one only knows the acquired resources while executing. Note
also that condition α1 constrains the effects of the running application e0 on the
other applications, but not on itself, otherwise a wanted, and fairly acceptable
behaviour could be discarded. An example of this is discussed in Section 2: the
RPC function enable_first above falsifies the goal← ¬busy(ie, v1) driving the
first case of the behavioural variation of the function interact. Summing up our
concurrent semantics embeds a sort of non-interference mechanism.

4 Conclusions

Our starting point has been the two-component COP language MLCoDa [10], in
which the context is a Datalog knowledge base and the application code is ML
with specific adaptation constructs; in particular, the dispatching mechanism is
driven by Datalog goals. Here, we have extended MLCoDa to operate in a concur-
rent environment. A major contribution of this paper is the run time verification
mechanism embedded in the semantics. It is triggered when a behavioural varia-
tion is about to start and it enforces a sort of non-interference among the running
applications.

Our proposal relies on a formal operational semantics of the extended lan-
guage, as well as on a type and effect system that associates each application
with a safe abstraction of its run time behaviour, namely a history expression.
The verification mechanism uses the history expressions of the application ready
to evaluate a behavioural variation and checks that none of its future actions
may invalidate the assumptions driving the execution of the other threads. Anal-
ogously, the application is protected against actions done by other threads. The
verification can be performed by simply moving at run time the Control Flow
Analysis done in [10] at load time. As a matter of fact, our mechanism for non-
interference has been inspired by the classical notion of critical section. In our
case, the resources to protect are the properties of the context that are relevant
for the execution of applications: a behavioural variation plays here a role similar
to that of a critical section.

Future work includes extending our prototypical implementation of MLCoDa [5]
with concurrency and the run time verification. Since history expressions are over-
approximations of the behaviour of applications, in some cases the verification
mechanism unnecessarily suspends the execution of a thread, e.g. when there is
a conditional and only one branch may lead to troubles. We would like to inves-
tigate whether it will be possible to live dangerously in a partially inconsistent
context. However, in this case some notions of compensation (or recovery like
in [11]) would be in order to prevent an application to crash definitely. A differ-
ent approach would be analysing a history expression to detect where the code
may perform dangerous activities, and dynamically instrument it accordingly, as
proposed in [4].

Related Work Most research efforts in COP have been directed toward the design
and the implementation of concrete languages; see [2] for an analysis of some
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implementations. Below, we focus on papers that are strictly related to our
proposal and on those proposing concurrency and verification mechanism; see [17]
for a broad survey on primitives and possible language designs.

Many COP languages are object oriented, thus behavioural variations are
often implemented as partially defined methods, and are not values as it is the
case in MLCoDa. The most notable exception is ContextL [9], that is based on
Common Lisp, from which it inherits higher-order features.

Typically, the context is a stack of layers, that can be activated and deactivated
at run time. One can simply and intuitively view a layer as an elementary property
(a proposition) of the current context. MLCoDa differs from this approach having
distinct formalisms for specifying the context and the applications. Others papers
in the literature do the same. The language Javanese [14] supplies primitives for
declaring a context and its properties in a logical manner through a temporal logic.
In Javanese the context represents properties of the system that are “activated
by an action and held active until another action that deactivates it occurs”.
This is similar to our vision where the system running an application is part
of the context and where a fact inserted into the context holds until explicitly
retracted. Also Subjective-C [13] is equipped with a domain-specific language
for specifying the contents of what is called a set of contexts. A context of
Subjective-C is just a single property holding in the working environment of an
application, behaving much like our facts. Similarly, a context is activated when
particular circumstances occur in the environment. Furthermore, Subjective-C
proposes constructs for specifying relationships and constraints over contexts,
e.g. inclusion and conflict. This approach is very similar to ours, and Datalog
can also express these kinds of relations through logical rules.

As far as we know a limited number of papers have considered concurrency
in COP. In [12] ContextML, a predecessor of MLCoDa, is proposed. It extends
ML with layers, layered expressions, and scoped activation mechanisms for layers
(with and without). Applications are made of many components with a local
context interacting through message passing. Similarly to the present proposal
a type and effect system computes application abstractions, but there they are
statically model-checked to enforce communication compliance and security poli-
cies. In [18] the formal semantics of ContextErlang describes the behaviour of the
constructs for adaptation within a distributed and concurrent framework, based
on message passing. Similar to ours, that semantics ensures a non-interference
property among Erlang actors.

As regards event-driven adaptation, EventCJ [1] is a Java-based language
which combines mechanisms from COP with event based changes of the context.
It provides constructs to declare both the events thrown by an application and the
transition rules specifying how to change the context when an event is received.
The language Flute [3] is designed for programming reactive adaptive software.
Flute constrains the execution of a procedure with certain contextual properties
specified by a developer. If any of these properties is no longer satisfied, the
execution is suspended until the property holds again. Stopping the execution
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is like in our approach when goal of a behavioural variation has been falsified
because of a context change.

In [6] a run time verification mechanism based on symbolic execution is
proposed. Differently from ours the verification step is performed just before
activating/deactivating a layer in the context, in order to check whether adap-
tation is possible. A different approach to verify applications is proposed in [7]:
the structure of contexts is a(n enriched) Petri net which is analysed through
existing tools.
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Abstract. A partial word is a word that may have some unknown places
known as “holes” and can be replaced by the symbols from the underlying
alphabet. A partial word u is said to be primitive if there does not exist a
word v such that u is contained in a nontrivial integer power of v. We study
the preservation of primitivity in partial words by the effect of some point
mutation operations. In this paper, we investigate the effect of exchanging
two adjacent symbols and of substituting a symbol by another symbol
from the alphabet. We characterize the classes of primitive partial words
with one hole which are not exchange robust and not substitute robust.
We prove that the language of exchange robust primitive partial words
with one hole is not right 1-dense and also prove that the language of
primitive partial words with one hole which is substitute robust is closed
under conjugacy relation. We show that the language of non-exchange-
robust primitive partial words is not context-free over a binary alphabet.

Keywords: Combinatorics on words, primitive word, partial word, exchange-
robust partial word, subst-robust partial word

1 Introduction

Let V be a finite alphabet. A word is a sequence of symbols from the alphabet V .
A partial word is a word that may have some unknown positions known as “holes”
or “do not know” symbols and are represented by ♦. The holes in the partial
words are place holder for the usual symbols in the alphabet. The study of partial
words is motivated by its application in molecular biology [1]. For example, the
alignment of two DNA sequences to recover as much information as possible can
be seen as the construction of two compatible partial words. The combinatorial
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properties of words play a vital role in the areas including formal languages [18],
coding theory [2], string searching algorithms [6], and computational biology [10].

In study of an algebraic structure, it is interest to investigate the operators
that preserves the algebraic structure. For example, homomorphisms are well-
known structure-preserving transformations in algebra and word combinatorics.
A word is said to be primitive if it cannot be represented as a power of a shorter
word. The algorithmic, algebraic and applied combinatorial properties of primitive
words have been extensively studied; see for example [11,12]. In [17,13], Păun et
al. have studied the conditions to preserve primitivity under morphisms. Dassow
et al. [7] investigated some operations where they proved that ww′ is a primitive
word where w is a given word and w′ is a modified mirror image of w. This
has been extended by Blanchet-Sadri et al. [5] for partial words. In [16], Păun
et al. introduced the notion of robustness of primitive words as point mutation
operations such as inserting a symbol, deletion of a symbol, substituting a symbol
by another symbol in the primitive word which preserves the primitivity. In
this paper, we discuss the robustness of primitive partial words with respect to
substitution and exchange operations. These classes of primitive partial words
are known as subst-robust and exchange-robust primitive partial words.

The rest of the paper is organized as follows. In Section 2 we discuss the basic
concepts and related results that are required in later sections. We characterize the
exchange-robust primitive partial words and identify some important properties
in Section 3. We prove that the language of non-exchange-robust primitive partial
words is not context-free over a given alphabet in Section 4. In Section 5, we
characterize the primitive partial words which remain primitive on substituting a
symbol by another symbol and identify some important results. Section 6 presents
about the conclusion and future work.

2 Prerequisites

Let V be a finite and nontrivial alphabet. A sequence of symbols from V is called
a word or string. A total word w = a0a1 . . . an−1 of length n is a total function
w : {0, 1, . . . , n − 1} 7→ V where ai ∈ V for i = 0, 1, . . . , n − 1. The length of
a word w is denoted by |w| and defined as the number of symbols appearing in
w. The empty word, λ, does not contain any symbol and |λ| = 0. The set of
all strings over the alphabet V is denoted as V ∗. The notation α(w) is used for
the set of distinct symbols appearing in w and |α(w)| is the number of distinct
symbols in w. A positive integer p is said to be a period of w if ai = ai+p for
0 ≤ i ≤ n− p− 1. Let w = xyz be a word. Then y is called a factor of w and x
and z are called prefix and suffix of w, respectively. The reverse of a word w is
written as rev(w) and defined as rev(w) = an−1 · · · a1a0 when w = a0a1 · · · an−1.
A word w is primitive if there does not exist a word u such that w = un with
n ≥ 2. The language of primitive and nonprimitive words are denoted as Q and
Z, respectively [11]. For a language L, we define length(L) = {|w| : w ∈ L}.

A partial word u of length n over an alphabet V can be defined by a partial
function u : {0, . . . , n − 1} 7→ V [4]. A partial word u may contain some
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‘do not know’ symbols known as holes along with the symbols from the underlying
alphabet. A “hole” or “do not know” symbol is represented by ♦. For 0 ≤ i < n,
if u(i) is defined then we say that i ∈ D(u) (the domain of u), otherwise i ∈ H(u)
(the set of holes) [3]. A total word is a partial word with empty set of holes.
For example, u = ♦bac♦a is a partial word of length 6 and D(u) = {1, 2, 3, 5}
and H(u) = {0, 4}. We use V♦ to denote enlarged alphabet V ∪ {♦}. If u is a
partial word of length n over V , then the companion of u is the total function
u♦ : {0, . . . , n− 1} → V ∪ {♦}.

Let u and v be two partial words of equal length. Then u is said to be
contained in v, if all elements in D(u) are also in the set D(v) and u(i) = v(i) for
all i ∈ D(u) and denoted by u @ v. A partial word u is said to be compatible to a
partial word v if there exists a partial word w such that u @ w and v @ w and is
denoted by u ↑ v. A partial word u is said to be primitive if there does not exist
a word v such that u @ vn with n ≥ 2 [4]. For example, w = abb♦ is a primitive
partial word and u = ab♦b is a nonprimitive partial word over V = {a, b}. The
languages of primitive partial words and nonprimitive partial words are denoted
as Qp and Zp, respectively. In particular, Qi

p denotes the language of primitive
partial words with at most i holes. A local period of a partial word u is a positive
integer p such that u(i) = u(i+ p) whenever i, i+ p ∈ D(u) [4].

Let w = uv be a nonempty partial word. Then, the partial words u and v are
said to be prefix and suffix of w, respectively. A partial word y is said to be a
factor of a word w if w can be written as xyz, where x, z ∈ V ∗♦ and y ∈ V +

♦ . The
set V ∗i contains all partial words with exactly i-holes. The partial word y is said
to be proper factor if x 6= λ or z 6= λ. A prefix (suffix) of length k of a partial word
w is denoted as pref(w, k) (suff(w, k)), respectively, where k ∈ {0, 1, . . . , |w|} and
pref(w, 0) = suff(w, 0) = λ.

We now recall some results from the literature that will be useful later in this
paper.

Theorem 1 (Fine and Wilf’s Theorem [9]). Let u and v be nonempty words
over V . Suppose uh and vk, for some h and k, have a common prefix (or suffix)
of length |u|+ |v| − gcd(|u|, |v|). Then there exists z ∈ V ∗ of length gcd(|u|, |v|)
such that u, v ∈ z∗.

Berstel and Boasson revisited Fine and Wilf’s theorem for partial words with
one hole.

Theorem 2 (Berstel and Boasson [1]). Let w be a partial word with one
hole which is locally p-periodic and locally q-periodic. If |w| ≥ p + q then w is
gcd(p, q)-periodic.

Definition 3 (Reflective Language [19]). A language L is called reflective
if xy ∈ L implies yx ∈ L for all x, y ∈ V ∗.

Lemma 4. [3] Let u and v be partial words. If there exists a primitive word x
such that uv @ xn for some positive integer n, then there exists a primitive word
y such that vu @ yn. Moreover, if uv is primitive then vu is primitive.
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Corollary 5. The languages Qp and Zp are reflective.

Proposition 6. [3] Let w be a partial word with one hole such that |α(w)| ≥ 2.
If a is any letter, then either w or wa is primitive.

The following result shows that we can obtain at least one primitive word by
substituting a symbol by another symbol.

Proposition 7. [16] Let |V | ≥ 3. For any word x ∈ V ∗ and for each decompo-
sition x = x1ax2, x1, x2 ∈ V ∗, a ∈ V , there is b ∈ V , b 6= a such that x1bx2 is
primitive.

But the result is not true in case of partial words. For example, considerw = x♦xa.
Substituting a by any letter from V will generate nonprimitive partial words.

Proposition 8. [3] Let u be a partial word with one hole which is not of the
form x♦x where x ∈ V +. Then for a ∈ V , at most one of the partial words ua
is not primitive.

3 Exchange-Robust Primitive Partial Words with One
Hole

In this section, we consider a new formal language known as exchange-robust
primitive partial words with one hole which remains primitive when any two
consecutive symbols in a partial word are exchanged. In particular, we consider
a 6= ♦ for a ∈ V because exchanging a and ♦ will generate different partial words.
For example, consider w = aba♦aa ∈ Qp, but exchanging position 3 and 4 we
have w′ = abaa♦a /∈ Qp.

Definition 9 (Exchange-Robust Partial Words). A primitive partial word
w = a0a1 · · · ai+1ai+2 · · · an−1 of length n with one hole is said to be exchange-
robust if and only if

pref(w, i) . ai+1ai . suff(w, n− i− 2)

is a primitive partial word for all i ∈ {0, 1, . . . n− 2}.

Remark : If a symbol a and a hole ♦ are adjacent, we exchange a and ♦.
We denote Q1X

p as the set of all primitive partial words with one hole which
are exchange-robust over the alphabet V . Clearly, the set of all exchange-robust
primitive partial words with one hole is a subset Qp. There are infinitely many
primitive partial words with one hole which are exchange-robust. For example,
an♦bna, n ≥ 2 is exchange-robust.

Our next result concerns the exchange of two different symbols at consecutive
places in a nonprimitive total word. We prove that the new word we obtained by
exchanging any two distinct consecutive symbols at any position in a nonprimitive
word results in a primitive word.
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Lemma 10. Let w be a total word with |α(w)| ≥ 2. If w = x1abx2 ∈ Z with
a 6= b then x1bax2 ∈ Q.

Proof. We prove it by contradiction. Let w be a nonprimitive word. Then there
exists a unique primitive word u such that w = um, m ≥ 2. We can express
w = um1u1abu2u

m2 where u1abu2 = u and m1, m2 ≥ 0, m1 +m2 ≥ 1. Assume
for contradiction that w′ = um1u1bau2u

m2 /∈ Q. As we know the languages Q and
Z are reflective, then it is enough to consider the word abu2u

m2um1u1. Suppose
abu2u

m2um1u1 = vm and bau2u
m2um1u1 = yn, m, n ≥ 2 and y ∈ Q. Let p be

the common suffix of vm and yn. The words vm and yn have common suffix of
length m|v| − 2 and n|y| − 2, respectively. We have |p| = m|v| − 2 = n|y| − 2. It
is not possible to have m = n = 2 which is not feasible.

So at least one ofm and n is strictly greater than 2. Without loss of generality,
let us assume that m ≥ 3 and n ≥ 2. Now,

2|p| = m|v|+ n|y| − 4
⇒ |p| = m

2 |v|+
n
2 |y| − 2

⇒ |p| ≥ |y|+ |v|+ 1
2 |v| − 2 (∵ m ≥ 3 and n ≥ 2)

Since |v| ≥ 2, we obtain that |p| ≥ |y| + |v| − 1. Hence by Theorem 1, v
and y are powers of the same primitive word which is a contradiction. Thus
bau2u

m2um1u1 ∈ Q which implies that w′ = um1u1bau2u
m2 ∈ Q. ut

The above result does not hold for partial words. Consider the partial word
w = a♦baab ∈ Zp. if we exchange b and a, we have w′ = a♦abab /∈ Qp.

Next we study the primitive partial words with one hole in which exchange
of two distinct consecutive symbols results in a nonprimitive partial word. We
call this set of partial words as non-exchange-robust primitive partial words with
one hole. We denote the set of non-exchange-robust primitive partial words with
one hole over an alphabet V as Q1X

p . It is easy to see that Q1X
p ∪Q1X

p = Q1
p.

Definition 11 (Non-exchange-robust Primitive Partial Words). A prim-
itive partial word with one hole is said to be non-exchange-robust if and only if
exchange of two distinct consecutive symbols results in a nonprimitive partial
word.

We give the structural characterization of non-exchange-robust primitive
partial words with one hole.

Theorem 12. A primitive partial word w with one hole is non-exchange-robust if
and only if w is contained in some word of the form uk1u1abu2u

k2 , a, b ∈ V, a 6= b
where u1xyu2 @ u1abu2 for x, y ∈ V♦ such that u1yxu2 @ u1bau2 = um with
m ≥ 2.

Proof. We prove the necessary and sufficient conditions as follows:
(⇒) Let w be a primitive partial word with one hole. Suppose w = v1xyv2 @
uk1u1abu2u

k2 where a 6= b such that v1 @ uk1u1, v2 @ u2u
k2 , xy @ ab. If we

exchange x and y, we get w′ = v1yxv2 @ uk1u1bau2 such that u1bau2 = um for
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m ≥ 2. Hence w′ @ uk, k ≥ 2 where k1 + m + k2 = k and thus w is not an
exchange-robust primitive partial word.

(⇐) Let w ∈ Q1
p which is not an exchange-robust partial word. Then there

exists at least one consecutive positions where exchanging them makes the partial
word nonprimitive. The partial word w can be written as either v1abv2 where
v1, v2 ∈ V ∗♦ or v1a♦v2 or v1♦av2 where v1, v2 ∈ V ∗. In first case, as we have
exactly one hole, it is exactly in one among v1 or v2. Let w′ = v1bav2 ∈ Zp that
is w′ = v1bav2 @ um for m ≥ 2. Now v1 @ uiu1 and v2 @ u2u

j for i, j ≥ 0.
Combining both we have v1bav2 @ uiu1bau2u

j where u1bau2 = uk for k ≥ 2.
The other two cases can be handled similarly. ut

Let us define Q1X
p = Q1

p \Q1X
p where ‘\’ is the set minus operator. There are

primitive partial words of arbitrary length which are non-exchange-robust; for
example, (ab)n♦a(ab)n for n ≥ 1. We denote the set of exchange-robust (non-
exchange-robust, respectively) primitive partial words with arbitrary number of
holes by QX

p (QX
p , respectively). The set of Q1X

p is not closed under the cyclic
permutation unlike the language of del-robust primitive partial words with one
hole [14]. For example, consider the partial word abbabb♦ab ∈ Q1X

p . One of the
cyclic permutation of the partial word is ababbabb♦, which is exchange-robust.

Definition 13 ([16]). A language L is said to be dense if for any word y there
exist x, z ∈ V ∗ such that xyz ∈ L. Let k be a positive integer. If for every u ∈ V ∗
there exists a word x ∈ V ∗, |x| ≤ k such that ux ∈ L then L is said to be right
k-dense.

Next we prove that the language of primitive partial words with at most one hole
is dense over the alphabet V♦. We show that the language of primitive partial
words with one hole which are exchange-robust is not dense.

Lemma 14. The language Q1
p is dense over alphabet V♦ in V ∗1 .

Proof. Consider a partial word w with at most one hole . Let |w| = n, n ≥ 1.
There are two different cases depending upon whether w is a primitive partial
word or a nonprimitive partial word.

Case A. Let w is a primitive partial word. By choosing x = λ and y = λ
according to definition we have xwy ∈ Q1

p.

Case B. Let w be a nonprimitive partial word. Here we consider two subcases
depending on whether w is contained in power of a symbol from the alphabet
or power of a word having at least two different letters.
Case B.1 Let w @ an, n ≥ 2 for some symbol a ∈ V . It can be easily seen

that wbn ∈ Q1
p where a and b are two distinct letters. Here x = λ and

y = bn for some b 6= a such that xwy ∈ Q1
p.

Case B.2 Let w @ uk, where |α(u)| ≥ 2 and k|n. By choosing x = λ and
y = bn, we have xwy ∈ Q1

p.
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Hence, for every w ∈ V ∗1 , there exist x, y ∈ V ∗1 such that xwy ∈ Q1
p. So Q1

p

is dense over the alphabet V♦ in V ∗1 . ut

We prove the following proposition.

Proposition 15. The language Q1X
p is not right 1-dense.

Proof. It is sufficient to find one partial word for which we cannot find any word
which satisfies the condition. Let w = x♦x be a primitive partial word with one
hole where x ∈ V ∗. Let us assume that w is not an exchange-robust primitive
partial word. Here both wa and wb are not primitive. Hence we cannot find a
word z with |z| ≤ 1 for w such that wz ∈ Q1X

p . Thus Q1X
p is not right 1-dense. ut

For the above proposition, such partial word exists. For example, take w =
aaba♦aaba. We have w /∈ Q1X

p and if we concatenate a or b at the right end of
w then we obtain a nonprimitive partial word.

4 QX
p is not context-free

In this section we prove that the language of non-exchange-robust primitive
partial words is not a context-free language over a given alphabet. In our proof,
we use the fact that intersection of a CFL and a regular language is also context-
free. We also use the result that the family of context-free languages are closed
under generalized sequential machine(gsm) mapping, and for details see [8].

Theorem 16. The language of non-exchange robust partial words is not context-
free over the alphabet V = {a, b}.

Proof. Consider the regular language R = ba+ba+ba+ba+. Consider the language

L = {ban1ban2ban3ban4 | n1, n2, n3, n4 ≥ 1, (|n1 − n3| ≤ 1, |n2 − n4| ≤ 1,
|(n1 + n2)− (n3 + n4)| = 0 or 2) and (n1 6= n3 or n2 6= n4)} (1)

We claim that QX
p ∩R = L.

The inclusion QX
p ∩ R ⊇ L is easy to observe. For the converse, let us take a

word w = ban1ban2ban3ban4 ∈ QX
p ∩R. As w ∈ QX

p , then w can be represented
as w = u1abu2 such that u1bau2 ∈ Z. We have the following possibilities of
exchanging.

Case 1. aban1−1ban2ban3ban4

Case 2. ban1−1ban2+1ban3ban4

Case 3. ban1+1ban2−1ban3ban4

Case 4. ban1ban2−1ban3+1ban4

Case 5. ban1ban2+1ban3−1ban4

Case 6. ban1ban2ban3−1ban4+1

Case 7. ban1ban2ban3+1ban4−1
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It is easy to see that all the above cases are in the language QX
p only if we have

(1) n1 6= n3 or n2 6= n4 (otherwise ban1ban2ban1ban2 /∈ Q)
(2) |n1 − n3| ≤ 1, |n2 − n4| ≤ 1, |(i+ j)− (k + l)| = 0 or 2 (otherwise the word

w′ ∈ QX
p

Hence the inclusion QX
p ∩R ⊆ L.

As we know that a CFL is closed under the gsm mapping then using a
sequential transducer (a gsm), the language QX

p ∩R can be translated into a new
language

L′ = {an1bn2cn3dn4 | n1, n2, n3, n4 ≥ 1, |n1 − n3| ≤ 1, |n2 − n4| ≤ 1,
|(n1 + n2)− (n3 + n4)| = 0 or 2 and (n1 6= n3 or n2 6= n4)} (2)

Now we prove that L′ is not a context-free language. Assume for contradiction
that L′ is context-free. Suppose there exist a constant N > 0 which must exist
by Ogden’s lemma. As L′ satisfies Ogden’s lemma (see Appendix), then every
w ∈ L′, |w| ≥ N can be decomposed into w = uvxyz such that the following
conditions hold: (i) vxy contains at most N marked symbols, (ii) v and y have
at least one marked symbol, (iii) and uvixyiz ∈ L′ for all i ≥ 0.

Consider a string w = an1bn2cn3dn4 such that n1 = N, n2 = N, n3 = N + 1
and n4 = N − 1. As |n1 − n3| ≤ 1, |n2 − n4| ≤ 1, |(n1 + n2) − (n3 + n4)| = 0
and n1 6= n3, n2 6= n4 then w ∈ L′. Let us mark all the occurrences of b which
are at least N of them. Now we can decompose w = uvxyz in such a way that
all the conditions of Ogden’s lemma are satisfied.

Clearly, neither v nor y contain two different symbols. There are two cases
depending on whether vy contains an occurrence of a or not.
(I) Suppose vy does not contain any occurrence of a. In this case, we have u =
aNbi1 , v = bm1 , x = bm2 , y = bm3 such thatm1+m3 ≥ 1, k1 = m1+m2+m3
and z = bN−(k1+i1)cN+1dN−1. For i = 2, uvxyz = aNbN+(m1+m3)cN+1dN−1

= ap1bp2cp3dp4 which is a contradiction as |p2 − p4| ≥ 2.
(II) Suppose vy contains occurrences of a. Let v = aj and y = bk for j, k ≥ 1.

If j < k, then for a large value of i, we can have w′ = uvixyiz = ap1bp2cp3dp4

such that |p1 − p3| > 1 which is a contradiction. Therefore we must have
j ≥ k. Consider the word uvixyiz which becomes aN−j+jibN−k+kicN+1dN−1.
For i = 5, we have w′′ = aN+4jbN+4kcN+1dN−1 where |(N+4j)− (N+1)| =
4j − 1 ≥ 3, |(N + 4k) − (N − 1)| = 4k + 1 ≥ 5 and |(N + 4j + N + 4k) −
(N + 1 +N − 1)| = 4(j + k) ≥ 8 which is a contradiction.

Hence L′ is not context-free. As we know that the family of context-free languages
is closed under sequential transducers and intersection with regular languages,
we conclude that QX

p is also not context-free. ut

5 Subst-Robust Primitive Partial Words

In this section we study the set of primitive partial words that remains primitive
on substitution of a symbol by another symbol. We refer to the definition of
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substitute robust total words [16] and define symbol substitution in partial words
as follows. Consider a partial word x ∈ V +

1 . We define one(x) = {x1bx2 | x =
x1ax2, x1, x2 ∈ V ∗1 , a, b ∈ V, a 6= b}. Let L ⊆ V ∗♦ and x ∈ L. Then x is called
subst-robust (w.r.to L) if one(x) ⊆ L.

Definition 17 (Subst-Robust Primitive Partial Words). A primitive par-
tial word w with one hole is said to be subst-robust if and only if one(w) ⊆ Q1

p.

Remark: Since ♦ is considered as a place holder for any of the symbol from the
given alphabet, only a symbol a ∈ V can be substituted by another symbol b ∈ V
such that a 6= b.

Proposition 18 ([16]). If L consists of only subst-robust words, then L = {w ∈
V ∗ | |w| ∈ length(L)}.

The above proposition is not true in case of partial words with one hole. For
example, let L′ = {a♦b, b♦b, b♦a, a♦a}. Though L′ is subst-robust, it does not
contain all the partial words with one hole of length 3. Next we extend the result
of Păun et al. [16] in case of partial words.

Lemma 19. Let x = x1αβx2 be a partial word with one hole where α, β ∈ V
and |x| ≥ 4. Then at least one of the partial words x1α

′βx2, x1αβ
′x2 is primitive

where α 6= α′ and β 6= β′.

Proof. We prove it by contradiction. Consider a partial word x with one hole
and |x| ≥ 4. As |x| ≥ 4, then x can be written as x = x1αβx2 where α, β ∈ V ,
|x1x2| ≥ 2 and either x1 or x2 contains a hole. As Q1

p is reflective, then to prove
the lemma it is sufficient to prove that at least one of the partial word x2x1α

′β
or x2x1αβ

′ is primitive.
Assume the contrary. Let x2x1α

′β @ um and x2x1αβ
′ @ vn for m, n ≥ 2

and u, v ∈ Q. It is not possible to have m = n = 2 otherwise u = v which is a
contradiction. So at least one of m, n is greater than 2. without loss of generality,
let us assume that m ≥ 3, n ≥ 2. Similarly, we cannot have |u| = 1; otherwise
x2x1α

′β @ um implies that u ∈ {a, b}. Since α 6= α′, β 6= β′ then x2x1αβ
′ is

primitive which is a contradiction to the assumption. Hence we have |u| ≥ 2.
Now, we have |x2x1| = m|u| − 2 and |x2x1| = n|v| − 2 which implies that

2|x2x1| = m|u|+ n|v| − 4
⇒ |x2x1| = m

2 |u|+
n
2 |v| − 2

As m ≥ 3 and n ≥ 2, we can write that |x2x1| ≥ |u|+ |v|+ 1
2 |u| − 2. Also |u| ≥ 2

implies that |x2x1| ≥ |u|+ |v| − 1. We consider the following cases.
(a) If |x2x1| = |u|+ |v| − 1 then m = n = 2 which leads to a contradiction.
(b) If |x2x1| > |u|+|v|−1 then by Theorem 2, there exist a word y such that u = yk

and v = yl for some integers k and l. Hence x2x1α
′β @ ykm and x2x1αβ

′ @ yln

which is a contradiction. Thus at least one of the x2x1α
′β, x2x1αβ

′ is a primitive
partial word. ut
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In the above lemma, |x| ≥ 4 is necessary. For example, let x = ♦ab and substi-
tuting a by b or b by a will generate nonprimitive partial words. Lemma 19 does
not hold for partial words with at least two holes. For example, w = ♦aa♦ over
V = {a, b}. Substituting first occurrence of a by b or last occurrence of a by b
will generate nonprimitive partial words.

We denote Q1S
p as the set of primitive partial words with one hole which

remains primitive on substitution of a symbol by another symbol from the given
alphabet. There are infinitely many primitive partial words with one hole which
are subst-robust. For example, w = (ab)n♦ for n ≥ 2 is subst-robust. It is worth
mentioning here that there are primitive partial words with one hole which are
at the same time exchange-robust and subst-robust. An example of such partial
word is

wm = ♦aba2b2 . . . ambm

for m ≥ 2 over V = {a, b}.
Let w = ab♦a be a primitive partial word over V = {a, b}. Substituting last

occurence of a by b will generate a nonprimitive partial word. We call the set of
primitive partial words as non-subst-robust primitive partial words with one hole
which on substitution of a symbol by another symbol results in a nonprimitive
partial word and denote by Q1S

p .

Q1S
p = {w | w = u1au2 ∈ Q1

p and w
′ = u1bu2 /∈ Q1

p}

Observe that Q1S
p = Q1

p \Q1S
p . Next, we characterize the set of primitive partial

words with one hole which are not subst-robust.
Theorem 20. A primitive partial word with one hole w = xay where x, y ∈
V ∗♦ , a ∈ V is not subst-robust if and only if it is contained in a word of the form
uk1u1au2u

k2 where x @ uk1u1, y @ u2u
k2 with k1 + k2 ≥ 1 such that u1bu2 = u

where a 6= b.

Proof. (⇒): Let us assume that w = xay is a non-subst-robust primitive partial
word with one hole. Then there exist a position in w in which a symbol can be
substituted by another symbol and makes it nonprimitive. Let w′ = xby be the
nonprimitive partial word and hence w′ = xby @ um, m ≥ 2 for some u ∈ Q.
Therefore, we have x @ uk1u1, y @ u2u

k2 such that u1bu2 = u for b 6= a. Hence
w @ uk1u1au2u

k2 .
(⇐): Let w be a primitive partial word with one hole and w = xay @

uk1u1au2u
k2 , k1 +k2 ≥ 1 where x, y ∈ V ∗♦ , a ∈ V with x @ uk1u1 and y @ u2u

k2 .
Also it is given that substituting a symbol b 6= a, we have u1bu2 = u. If we
substitute a symbol b 6= a in w = xay, we get w′ = xby such that w′ = xby @
uk1uuk2 = uk1+k2+1 and k1 + k2 + 1 ≥ 2. Hence w = xay is not subst-robust.

Next we prove that the language of subst-robust primitive words with one hole
is closed under cyclic permutation. We know that two partial words x and y are
conjugate if there exist partial words u and v such that x @ uv and y @ vu. A
language L is closed under conjugacy relation if the cyclic permutations of all
the words are in L.
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Lemma 21. The language Q1S
p is closed under conjugacy relation.

Proof. We prove it by contradiction. Let w = v1v2 be a primitive partial word
with one hole such that w ∈ Q1S

p . Suppose w′ = v2v1 /∈ Q1S
p . w = v1v2 ∈ Q1S

p

implies w = v1v2 ∈ Qp. Since w′ = v2v1 /∈ Q1S
p then we can write w′ = v2v1 @

uk1u1au2u
k2 such that u1bu2 = u. We consider two cases depending on whether

a is in v1 or in v2.

Case A. If the symbol a in contained in v2 then we consider the following
possibilities.
Case A.1 If entire u1au2 is from v2 then v2 @ uk1u1au2u

ru′1 and v1 @ u′2u
s

where u = u′1u
′
2 and r + s + 1 = k2. Now v1v2 @ u′2u

suk1u1au2u
ru′1.

Substituting a by b we obtain a nonprimitive partial word which is a
contradiction that v1v2 ∈ Q1S

p .
Case A.2 If a portion of u2 is from v2 then v2 @ uk1u1au

′
2 and v1 @

u′′2u
k2 where u2 = u′2u

′′
2 . Now v1v2 @ u′′2u

k2uk1u1au
′
2 which will result a

nonprimitive partial word after a is substituted by the letter b. Moreover
v1v2 @ (u′′2u1bu

′
2)k1+k2+1 and v1v2 is not subst-robust primitive partial

word.
Case B. If the symbol a is not contained in v2 then we can handle two different

cases as the previous one.
ut

The following corollary is a consequence of Theorem 20.

Corollary 22. A primitive partial word with one hole w ∈ Q1S
p if and only if

it is either contained in unu′a or it’s cyclic permutation for some u ∈ Qp and
u′b = u for b 6= a.

Proof. The proof of necessary and sufficient conditions are as follow:
(Necessary Part:) Let w = xay be a primitive partial word with one hole which
is not subst-robust.Then w = xay @ uk1u1au2u

k2 for some u ∈ Q such that
u1bu2 = u and k1 + k2 + 1 ≥ 2. As the language Q1S

p is reflective, then yxa @
u2u

k2uk1u1a = (u2u1b)k1+k2u2u1a = xk1+k2x′a where x = u2u2 and x′ = u2u1.
(Sufficient Part:) Let w be a partial word. If w is contained in unu′a where

u′b = u or it’s cyclic permutation then by substituting a by b where b 6= a,
we obtain w′ ∈ un+1 which is a nonprimitive partial word. Hence w is not a
subst-robust primitive partial word.

6 Conclusion

We investigated exchange-robust and substitute robust primitive partial words
with one hole. The structural characterization of each of the class of primitive
partial words with one hole have been discussed and also some important com-
binatorial properties related to each of the class have been identified. We have
shown that the language of non-exchange-robust primitive partial words is not
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a context-free language. We mention some of the interesting questions that are
still unanswered. (1) The notion of robustness can be studied further for partial
words with at least two holes. (2) Is the language of primitive partial words QX

p

context-free? (3) One can consider to exchange two symbols at any positions and
preserve primitivity.
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A Ogden’s Lemma for CFL

For completeness we recall the Ogden’s lemma to prove that the language of
non-exchange-robust partial words is not context-free.
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Lemma 23 (Ogden’s Lemma [15]). Let L be a context-free language. The
there exists a constant N > 0 such that every string w ∈ L that has at least N
marked symbols can be decomposed in the form w = uvxyz such that the following
conditions hold:

(i) together v and x have at least one marked symbol.
(ii) vxy contains at most N marked symbols.
(iii) uvixyiz ∈ L for all i ≥ 0.
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Abstract. Larsen and Skou characterized probabilistic bisimilarity over
reactive probabilistic systems with a logic including true, negation, con-
junction, and a diamond modality decorated with a probabilistic lower
bound. Later on, Desharnais, Edalat, and Panangaden showed that nega-
tion is not necessary to characterize the same equivalence. In this paper,
we prove that the logical characterization holds also when conjunction is
replaced by disjunction, with negation still being not necessary. To this
end, we introduce reactive probabilistic trees, a fully abstract model for re-
active probabilistic systems that allows us to demonstrate expressiveness
of the disjunctive probabilistic modal logic, as well as of the previously
mentioned logics, by means of a compactness argument.

1 Introduction

Since its introduction [12], probabilistic bisimilarity has been used to compare
probabilistic systems. It corresponds to Milner’s strong bisimilarity for nonde-
terministic systems, and coincides with lumpability for Markov chains. Larsen
and Skou [12] first proved that bisimilarity for reactive probabilistic systems can
be given a logical characterization: two processes are bisimilar if and only if
they satisfy the same set of formulas of a propositional modal logic similar to
Hennessy-Milner logic [10]. In addition to the usual constructs >, ¬, and ∧, this
logic features a diamond modality 〈a〉pφ, which is satisfied by a state if, after
performing action a, the probability of being in a state satisfying φ is at least p.

Later on, Desharnais, Edalat, and Panangaden [6] showed that negation is
not necessary for discrimination purposes, by working in a continuous-state
setting. This result has no counterpart in the nonprobabilistic setting, where
Hennessy-Milner logic without negation characterizes simulation equivalence,
which is strictly coarser than bisimilarity [8] (while the two equivalences are
known to coincide on reactive probabilistic systems [2]).
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In this paper, we show that ∨ can be used in place of ∧ without having to
reintroduce negation: the constructs >, ∨, and 〈a〉p suffice to characterize bisim-
ilarity on reactive probabilistic systems. The intuition is that from a conjunctive
distinguishing formula we can often derive a disjunctive one by suitably increas-
ing some probabilistic lower bounds. Not even this result has a counterpart in
the nonprobabilistic setting, where replacing conjunction with disjunction in the
absence of negation yields trace equivalence (this equivalence does not coincide
with bisimilarity on reactive probabilistic processes).

The proof of our result relies on a simple categorical construction of a seman-
tics for reactive probabilistic systems, which we call reactive probabilistic trees
(Sect. 3). This semantics is fully abstract, i.e., two states are probabilistically
bisimilar if and only if they are mapped to the same reactive probabilistic tree.
Moreover, the semantics is compact, in the sense that two (possibly infinite) trees
are equal if and only if all of their finite approximations are equal. Hence, in
order to prove that a logic characterizes probabilistic bisimilarity, it suffices to
prove that it allows to discriminate finite reactive probabilistic trees. Indeed,
given two different finite trees, we can construct a formula of the considered logic
(by induction on the height of one of the trees) that tells the two trees apart and
has a depth not exceeding the height of the two trees (Sect. 4). Our technique
applies also to the logics in [12,6], for which it allows us to provide simpler proofs
of adequacy, directly in a discrete setting. More generally, this technique can be
used in any computational model that has a compact, fully abstract semantics.

2 Processes, Bisimilarity, and Logics

2.1 Reactive Probabilistic Processes and Strong Bisimilarity

Probabilistic processes can be represented as labeled transitions systems with
probabilistic information used to determine which action is executed or which
state is reached. Following the terminology of [9], we focus on reactive proba-
bilistic processes, where every state has for each action at most one outgoing
distribution over states; the choice among these arbitrarily many, differently la-
beled distributions is nondeterministic. For a countable (i.e., finite or countably
infinite) setX, the set of finitely supported (a.k.a. simple) probability distributions
over X is given by D(X) = {∆ : X → R[0,1] | | supp(∆)| < ω,

∑
x∈X ∆(x) = 1},

where the support of distribution ∆ is defined as supp(∆) , {x ∈ X | ∆(x) > 0}.
A reactive probabilistic labeled transition system, RPLTS for short, is a triple

(S,A,−→) where S is a countable set of states, A is a countable set of ac-
tions, and −→ ⊆ S × A × D(S) is a transition relation such that, whenever
(s, a,∆1), (s, a,∆2) ∈ −→, then ∆1 = ∆2.

An RPLTS can be seen as a directed graph whose edges are labeled by
pairs (a, p) ∈ A × R(0,1]. For every s ∈ S and a ∈ A, if there are a-labeled
edges outgoing from s, then these are finitely many (image finiteness), because
the considered distributions are finitely supported, and the numbers on them
add up to 1. As usual, we denote (s, a,∆) ∈ −→ as s a−→∆, where the set of
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reachable states coincides with supp(∆). We also define cumulative reachability
as ∆(S′) =

∑
s′∈S′ ∆(s′) for all S′ ⊆ S.

Probabilistic bisimilarity for the class of reactive probabilistic processes was
introduced by Larsen and Skou [12]. Let (S,A,−→) be an RPLTS. An equivalence
relation B over S is a probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then for
all actions a ∈ A it holds that, if s1

a−→∆1, then s2
a−→∆2 and ∆1(C) = ∆2(C)

for all equivalence classes C ∈ S/B. We say that s1, s2 ∈ S are probabilistically
bisimilar, written s1 ∼PB s2, iff there exists a probabilistic bisimulation including
the pair (s1, s2).

2.2 Probabilistic Modal Logics

In our setting, a probabilistic modal logic is a pair formed by a set L of formulas
and an RPLTS-indexed family of satisfaction relations |= ⊆ S × L. The logical
equivalence induced by L over S is defined by letting s1 ∼=L s2, where s1, s2 ∈ S,
iff s1 |= φ ⇐⇒ s2 |= φ for all φ ∈ L. We say that L characterizes a binary
relation R over S when R = ∼=L.

We are especially interested in probabilistic modal logics characterizing ∼PB.
The logics considered in this paper are similar to Hennessy-Milner logic [10], but
the diamond modality is decorated with a probabilistic lower bound as follows:

PML¬∧ : φ ::= > | ¬φ | φ ∧ φ | 〈a〉pφ PML∧ : φ ::= > | φ ∧ φ | 〈a〉pφ
PML¬∨ : φ ::= > | ¬φ | φ ∨ φ | 〈a〉pφ PML∨ : φ ::= > | φ ∨ φ | 〈a〉pφ

where p ∈ R[0,1]; trailing >’s will be omitted for sake of readability. Their seman-
tics with respect to an RPLTS state s is defined as usual, in particular:

s |= 〈a〉pφ ⇐⇒ s
a−→∆ and ∆({s′ ∈ S | s′ |= φ}) ≥ p

Larsen and Skou [12] proved that PML¬∧ (and hence PML¬∨) characterizes
∼PB. Desharnais, Edalat, and Panangaden [6] then proved in a measure-theoretic
setting that PML∧ characterizes ∼PB too, and hence negation is not necessary.
This was subsequently redemonstrated by Jacobs and Sokolova [11] in the dual
adjunction framework and by Deng and Wu [5] for a fuzzy extension of RPLTS.
The main aim of this paper is to show that PML∨ suffices as well.

3 Compact Characterization of Probabilistic Bisimilarity
3.1 Coalgebras for Probabilistic Systems
It is well known that the function D defined in Sect. 2.1 extends to a functor
D : Set → Set whose action on morphisms is, for f : X → Y , D(f)(∆) =
λy.∆(f−1(y)). Then, every RPLTS corresponds to a coalgebra of the functor
BRP : Set→ Set, BRP (X) , (D(X) + 1)A. Indeed, for S = (S,A,−→), the corre-
sponding coalgebra (S, σ : S → BRP (S)) is σ(s) , λa.(if s a−→∆ then ∆ else ∗).
A homomorphism h : (S, σ) → (T, τ) is a function h : S → T that respects the
coalgebraic structures, i.e., τ ◦ h = (BRPh) ◦ σ. We denote by Coalg(BRP ) the
category of BRP -coalgebras and their homomorphisms.

Aczel and Mendler [1] introduced a general notion of bisimulation for coalge-
bras, which in our setting instantiates as follows:
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Definition 1. Let (S1, σ1), (S2, σ2) be BRP -coalgebras. A relation R ⊆ S1 × S2
is a BRP -bisimulation iff there exists a coalgebra structure ρ : R → BRPR
such that the projections π1 : R → S1, π2 : R → S2 are homomorphisms (i.e.,
σi ◦πi = BRPπi ◦ρ for i = 1, 2). We say that s1 ∈ S1, s2 ∈ S2 are BRP -bisimilar,
written s1 ∼ s2, iff there exists a BRP -bisimulation including (s1, s2).

Proposition 1. The probabilistic bisimilarity over an RPLTS (S,A,−→) coin-
cides with the BRP -bisimilarity over the corresponding coalgebra (S, σ).

BRP is finitary (because we restrict to finitely supported distributions) and
hence admits final coalgebra (cf. [3,15] and specifically [14, Thm. 4.6]). The final
coalgebra is unique up-to isomorphism, and can be seen as the RPLTS whose
elements are canonical representatives of all possible behaviors of any RPLTS:

Proposition 2. Let (Z, ζ) be a final BRP -coalgebra. For all z1, z2 ∈ Z: z1 ∼ z2
iff z1 = z2.

3.2 Reactive Probabilistic Trees
We now introduce reactive probabilistic trees, a representation of the final BRP -
coalgebra that can be seen as the natural extension to the probabilistic setting
of strongly extensional trees used to represent the final Pf -coalgebra [15].

Definition 2 (RPT). An (A-labeled) reactive probabilistic tree is a pair (X,
succ) where X ∈ Set and succ : X×A→ Pf (X×R(0,1]) are such that the relation
≤ over X, defined by the rules x≤x and x≤y z∈succ(y,a)

x≤z , is a partial order with
a least element, called root, and for all x ∈ X and a ∈ A:

1. the set {y ∈ X | y ≤ x} is finite and well-ordered;
2. for all (x1, p1), (x2, p2) ∈ succ(x, a): if x1 = x2 then p1 = p2; if the subtrees

rooted at x1 and x2 are isomorphic then x1 = x2;
3. if succ(x, a) 6= ∅ then

∑
(y,p)∈succ(x,a) p = 1.

Reactive probabilistic trees are unordered trees where each node for each
action has either no successors or a finite set of successors, which are labeled
with positive real numbers that add up to 1; moreover, subtrees rooted at these
successors are all different. See the forthcoming Fig. 1 for some examples. In
particular, the trivial tree is nil , ({⊥}, λx, a.∅).

We denote by RPT, ranged over by t, t1, t2, the set of reactive probabilistic
trees (possibly of infinite height), up-to isomorphism. For t = (X, succ), we denote
its root by ⊥t, its a-successors by t(a) , succ(⊥t, a), and the subtree rooted at
x ∈ X by t[x] , ({y ∈ X | x ≤ y}, λy, a.succ(y, a)); thus, ⊥t[x] = x. We define
height : RPT→ N ∪ {ω} as height(t) , sup{1 + height(t′) | (t′, p) ∈ t(a), a ∈ A}
with sup ∅ = 0; hence, height(nil) = 0. We denote by RPTf , {t ∈ RPT |
height(t) < ω} the set of reactive probabilistic trees of finite height.

A (possibly infinite) tree can be pruned at any height n, yielding a finite
tree where the removed subtrees are replaced by nil. The “pruning” function
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(·)|n : RPT→ RPTf , parametric in n, can be defined by first truncating the tree
t at height n, and then collapsing isomorphic subtrees adding their weights.

We have now to show that RPT is (the carrier of) the final BRP -coalgebra
(up-to isomorphism). To this end, we reformulate BRP in a slightly more “rela-
tional” format. We define a functor D′ : Set→ Set as follows:
D′X , {∅}∪{U∈Pf (X×R(0,1]) |

∑
(x,p)∈U p = 1 and (x, p), (x, q) ∈ U ⇒ p = q}

D′f , λU ∈ D′X.{(f(x),
∑

(x,p)∈U p) | x ∈ π1(U)} for any f : X → Y.

Proposition 3. D′A ∼= BRP , and Coalg(D′A) ∼= Coalg(BRP ); hence the (sup-
ports of the) final D′A-coalgebra and the final BRP -coalgebra are isomorphic.

RPT is the carrier of the final BRP -coalgebra (up-to isomorphism). In fact,
RPT can be endowed with a D′A-coalgebra structure ρ : RPT → (D′(RPT))A
defined, for t = (X, succ), as ρ(t)(a) , {(t[x], p) | (x, p) ∈ succ(⊥t, a)}.

Theorem 1. (RPT, ρ) is a final BRP -coalgebra.

By virtue of Thm. 1, given an RPLTS S = (S,A,−→) there exists a unique
coalgebra homomorphism J·K : S → RPT, called the (final) semantics of S, which
associates each state in S with its behavior. This semantics is fully abstract.
Another key property of reactive probabilistic trees is that they are compact: two
different trees can be distinguished by looking at their finite subtrees only.

Theorem 2 (Full abstraction). Let (S,A,−→) be an RPLTS. For all s1, s2 ∈
S: s1 ∼PB s2 iff Js1K = Js2K.

Theorem 3 (Compactness). For all t1, t2 ∈ RPT: t1 = t2 iff for all n ∈ N :
t1|n = t2|n.

Corollary 1. Let (S,A,−→) be an RPLTS. For all s1, s2 ∈ S: s1 ∼PB s2 iff for
all n ∈ N : Js1K|n = Js2K|n.

4 The Discriminating Power of PML∨

By virtue of the categorical construction leading to Cor. 1, in order to prove
that a modal logic characterizes ∼PB over reactive probabilistic processes, it is
enough to show that it can discriminate all reactive probabilistic trees of finite
height. A specific condition on the depth of distinguishing formulas has also to
be satisfied, where depth(φ) is defined as usual:
depth(>) = 0 depth(¬φ′) = depth(φ′) depth(〈a〉pφ′) = 1 + depth(φ′)

depth(φ1 ∧ φ2) = depth(φ1 ∨ φ2) = max(depth(φ1), depth(φ2))

Proposition 4. Let L be one of the probabilistic modal logics in Sect. 2.2. If
L characterizes = over RPTf and for any two nodes t1 and t2 of an arbitrary
RPTf model such that t1 6= t2 there exists φ ∈ L distinguishing t1 from t2 such
that depth(φ) ≤ max(height(t1), height(t2)), then L characterizes ∼PB over the
set of RPLTS models.
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In this section, we show the main result of the paper: the logical equivalence
induced by PML∨ has the same discriminating power as ∼PB. This result is
accomplished in three steps. Firstly, we redemonstrate Larsen and Skou’s result
for PML¬∧ in the RPTf setting, which yields a proof that, with respect to the one
in [12], is simpler and does not require the minimal deviation assumption (i.e., that
the probability associated with any state in the support of the target distribution
of a transition be a multiple of some value). This provides a proof scheme for the
subsequent steps. Secondly, we demonstrate that PML¬∨ characterizes ∼PB by
adapting the proof scheme to cope with the replacement of ∧ with ∨. Thirdly, we
demonstrate that PML∨ characterizes ∼PB by further adapting the proof scheme
to cope with the absence of ¬.

Moreover, we redemonstrate Desharnais, Edalat, and Panangaden’s result for
PML∧ through yet another adaptation of the proof scheme that, unlike the proof
in [6], works directly on discrete state spaces without making use of measure-
theoretic arguments. Avoiding the resort to measure theory was shown to be
possible for the first time by Worrell in an unpublished note cited in [13].

4.1 PML¬∧ Characterizes ∼PB: A New Proof
To show that the logical equivalence induced by PML¬∧ implies node equality
=, we reason on the contrapositive. Given two nodes t1 and t2 such that t1 6= t2,
we proceed by induction on the height of t1 to find a distinguishing PML¬∧
formula whose depth is not greater than the heights of t1 and t2. The idea is to
exploit negation, so to ensure that certain distinguishing formulas are satisfied
by a certain derivative t′ of t1 (rather than the derivatives of t2 different from t′),
then take the conjunction of those formulas preceded by a diamond decorated
with the probability for t1 of reaching t′.

The only non-trivial case is the one in which t1 and t2 enable the same
actions. At least one of those actions, say a, is such that, after performing it,
the two nodes reach two distributions ∆1,a and ∆2,a such that ∆1,a 6= ∆2,a.
Given a node t′ ∈ supp(∆1,a) such that ∆1,a(t′) > ∆2,a(t′), by the induction
hypothesis there exists a PML¬∧ formula φ′2,j that distinguishes t′ from a specific
t′2,j ∈ supp(∆2,a) \ {t′}. We can assume that t′ |= φ′2,j 6=| t′2,j otherwise, thanks
to the presence of negation in PML¬∧, it would suffice to consider ¬φ′2,j .

As a consequence, t1 |= 〈a〉∆1,a(t′)
∧
j φ
′
2,j 6=| t2 because ∆1,a(t′) > ∆2,a(t′)

and ∆2,a(t′) is the maximum probabilistic lower bound for which t2 satisfies a
formula of that form. Notice that ∆1,a(t′) may not be the maximum probabilistic
lower bound for which t1 satisfies such a formula, because

∧
j φ
′
2,j might be

satisfied by other a-derivatives of t1 in supp(∆1,a) \ {t′}.
Theorem 4. Let (T,A,−→) be in RPTf and t1, t2 ∈ T . Then t1 = t2 iff t1 |=
φ ⇐⇒ t2 |= φ for all φ ∈ PML¬∧. Moreover, if t1 6= t2, then there exists φ ∈
PML¬∧ distinguishing t1 from t2 such that depth(φ)≤max(height(t1), height(t2)).

4.2 PML¬∨ Characterizes ∼PB: Adapting the Proof
Since φ1 ∧ φ2 is logically equivalent to ¬(¬φ1 ∨ ¬φ2), it is not surprising that
PML¬∨ characterizes ∼PB too. However, the proof of this result will be useful to
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set up an outline of the proof of the main result of this paper, i.e., that PML∨
characterizes ∼PB as well.

Similar to the proof of Thm. 4, also for PML¬∨ we reason on the contrapositive
and proceed by induction. Given t1 and t2 such that t1 6= t2, we intend to exploit
negation, so to ensure that certain distinguishing formulas are not satisfied by
a certain derivative t′ of t1 (rather than the derivatives of t2 different from t′),
then take the disjunction of those formulas preceded by a diamond decorated
with the probability for t2 of not reaching t′.

In the only non-trivial case, for t′ ∈ supp(∆1,a) such that ∆1,a(t′) > ∆2,a(t′),
by the induction hypothesis there exists a PML¬∨ formula φ′2,j that distinguishes
t′ from a specific t′2,j ∈ supp(∆2,a)\{t′}. We can assume that t′ 6|= φ′2,j =| t′2,j oth-
erwise, thanks to the presence of negation in PML¬∨, it would suffice to consider
¬φ′2,j . Therefore, t1 6|= 〈a〉1−∆2,a(t′)

∨
j φ
′
2,j =| t2 because 1−∆2,a(t′) > 1−∆1,a(t′)

and the maximum probabilistic lower bound for which t1 satisfies a formula of
that form cannot exceed 1−∆1,a(t′). Notice that 1−∆2,a(t′) is the maximum
probabilistic lower bound for which t2 satisfies such a formula, because that value
is the probability with which t2 does not reach t′ after performing a.

Theorem 5. Let (T,A,−→) be in RPTf and t1, t2 ∈ T . Then t1 = t2 iff t1 |=
φ ⇐⇒ t2 |= φ for all φ ∈ PML¬∨. Moreover, if t1 6= t2, then there exists φ ∈
PML¬∨ distinguishing t1 from t2 such that depth(φ)≤max(height(t1), height(t2)).

4.3 Also PML∨ Characterizes ∼PB

The proof that PML∨ characterizes ∼PB is inspired by the one for PML¬∨, thus
considers the contrapositive and proceeds by induction. In the only non-trivial
case, we will arrive at a point in which t1 6|= 〈a〉1−(∆2,a(t′)+p)

∨
j∈J φ

′
2,j =| t2 for:

– a derivative t′ of t1, such that∆1,a(t′) > ∆2,a(t′), not satisfying any subformula
φ′2,j ;

– a suitable probabilistic value p such that ∆2,a(t′) + p < 1;
– an index set J identifying certain derivatives of t2 other than t′.

The choice of t′ is crucial, because negation is no longer available in PML∨.
Different from the case of PML¬∨, this induces the introduction of p and the limi-
tation to J in the format of the distinguishing formula. An important observation
is that, in many cases, a disjunctive distinguishing formula can be obtained from
a conjunctive one by suitably increasing some probabilistic lower bounds. An
obvious exception is when the use of conjunction/disjunction is not necessary for
telling two different nodes apart.

Example 1. The nodes t1 and t2 in Fig. 1(a) cannot be distinguished by any
formula in which neither conjunction nor disjunction occurs. It holds that:

t1 |= 〈a〉0.5 (〈b〉1 ∧ 〈c〉1) 6=| t2 t1 6|= 〈a〉1.0 (〈b〉1 ∨ 〈c〉1) =| t2
Notice that, when moving from the conjunctive formula to the disjunctive one, the
probabilistic lower bound decorating the a-diamond increases from 0.5 to 1 and
the roles of t1 and t2 with respect to |= are inverted. The situation is similar for
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Fig. 1. RPTf models used in the examples of Sects. 4.3 and 4.4.

the nodes t3 and t4 in Fig. 1(b), where two occurrences of conjunction/disjunction
are necessary:
t3 |= 〈a〉0.2 (〈b〉1 ∧ 〈c〉1 ∧ 〈d〉1) 6=| t4 t3 |= 〈a〉0.9 (〈b〉1 ∨ 〈c〉1 ∨ 〈d〉1) 6=| t4
but the roles of t3 and t4 with respect to |= cannot be inverted.

Example 2. For the nodes t5 and t6 in Fig. 1(c), it holds that:
t5 6|= 〈a〉0.5 (〈b〉1 ∧ 〈c〉1) =| t6

If we replace conjunction with disjunction and we vary the probabilistic lower
bound between 0.5 and 1, we produce no disjunctive formula capable of discrim-
inating between t5 and t6. Nevertheless, a distinguishing formula belonging to
PML∨ exists with no disjunctions at all:

t5 6|= 〈a〉0.5 〈b〉1 =| t6

The examples above show that the increase of some probabilistic lower bounds
when moving from conjunctive distinguishing formulas to disjunctive ones takes
place only in the case that the probabilities of reaching certain nodes have to be
summed up. Additionally, we recall that, in order for two nodes to be related by
∼PB, they must enable the same actions, so focussing on a single action is enough
for discriminating when only disjunction is available. Bearing this in mind, for
any node t of finite height we define the set Φ∨(t) of PML∨ formulas satisfied by
t featuring:
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– probabilistic lower bounds of diamonds that are maximal with respect to
the satisfiability of a formula of that format by t (this is consistent with the
observation in the last sentence before Thm. 5, and keeps the set Φ∨(t) finite);

– diamonds that arise only from existing transitions that depart from t (so to
avoid useless diamonds in disjunctions and hence keep the set Φ∨(t) finite);

– disjunctions that stem only from single transitions of different nodes in the
support of a distribution reached by t (transitions departing from the same
node would result in formulas like

∨
h∈H〈ah〉ph

φh, with ah1 6= ah2 for h1 6= h2,
which are useless for discriminating with respect to ∼PB) and are preceded
by a diamond decorated with the sum of the probabilities assigned to those
nodes by the distribution reached by t.

Definition 3. The set Φ∨(t) for a node t of finite height is defined by induction
on height(t) as follows:

– If height(t) = 0, then Φ∨(t) = ∅.
– If height(t) ≥ 1 for t having transitions of the form t

ai−→∆i with supp(∆i) =
{t′i,j | j ∈ Ji} and i ∈ I 6= ∅, then: Φ∨(t) = {〈ai〉1 | i ∈ I} ∪⋃
i∈I

hplb(
⋃

∅6=J′⊆Ji

{〈ai〉∑
j∈J′

∆i(t′
i,j

)

.∨
j∈J′

φ′i,j,k | t′i,j ∈ supp(∆i), φ′i,j,k ∈ Φ∨(t′i,j)})

where ∨̇ is a variant of ∨ in which identical operands are not admitted (i.e.,
idempotence is forced) and hplb keeps only the formula with the highest prob-
abilistic lower bound decorating the initial ai-diamond among the formulas
differring only for that bound.

To illustrate the definition given above, we exhibit some examples showing
the usefulness of Φ∨-sets for discrimination purposes. Given two different nodes
that with the same action reach two different distributions, a good criterion for
choosing t′ (a derivative of the first node not satisfying certain formulas, to which
the first distribution assigns a probability greater than the second one) seems to
be the minimality of the Φ∨-set.

Example 3. For the nodes t7 and t8 in Fig. 1(d), we have:
Φ∨(t7) = {〈a〉1, 〈a〉1〈b〉1} Φ∨(t8) = {〈a〉1, 〈a〉1〈b〉1, 〈a〉1〈c〉1}

A formula like 〈a〉1 (〈b〉1 ∨ 〈c〉1) is useless for discriminating between t7 and t8,
because disjunction is between two actions enabled by the same node and hence
constituting a nondeterministic choice. Indeed, such a formula is not part of
Φ∨(t8). While in the case of conjunction it is often necessary to concentrate on
several alternative actions, in the case of disjunction it is convenient to focus on
a single action per node when aiming at producing a distinguishing formula.

The fact that 〈a〉1〈c〉1 ∈ Φ∨(t8) is a distinguishing formula can be retrieved
as follows. Starting from the two identically labeled transitions t7

a−→∆7,a and
t8

a−→∆8,a where ∆7,a(t′7) = 1 = ∆8,a(t′8) and ∆7,a(t′8) = 0 = ∆8,a(t′7), we have:
Φ∨(t′7) = {〈b〉1} Φ∨(t′8) = {〈b〉1, 〈c〉1}

If we focus on t′7 because ∆7,a(t′7) > ∆8,a(t′7) and its Φ∨-set is minimal, then
t′7 6|= 〈c〉1 =| t′8 with 〈c〉1 ∈ Φ∨(t′8) \Φ∨(t′7). As a consequence, t7 6|= 〈a〉1〈c〉1 =| t8
where the value 1 decorating the a-diamond stems from 1−∆8,a(t′7).
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Example 4. For the nodes t1 and t2 in Fig. 1(a), we have:
Φ∨(t1) = {〈a〉1, 〈a〉0.5〈b〉1, 〈a〉0.5〈c〉1}
Φ∨(t2) = {〈a〉1, 〈a〉0.5〈b〉1, 〈a〉0.5〈c〉1, 〈a〉1 (〈b〉1 ∨ 〈c〉1)}

The formulas with two diamonds and no disjunction are identical in the two sets,
so their disjunction 〈a〉0.5〈b〉1 ∨ 〈a〉0.5〈c〉1 is useless for discriminating between t1
and t2. Indeed, such a formula is part of neither Φ∨(t1) nor Φ∨(t2). In contrast,
their disjunction in which decorations of identical diamonds are summed up, i.e.,
〈a〉1 (〈b〉1 ∨ 〈c〉1), is fundamental. It belongs only to Φ∨(t2) because in the case
of t1 the b-transition and the c-transition depart from the same node, hence no
probabilities can be added.

The fact that 〈a〉1 (〈b〉1 ∨ 〈c〉1) ∈ Φ∨(t2) is a distinguishing formula can
be retrieved as follows. Starting from the two identically labeled transitions
t1

a−→∆1,a and t2
a−→∆2,a where ∆1,a(t′1) = ∆1,a(t′′1) = 0.5 = ∆2,a(t′2) =

∆2,a(t′′2) and ∆1,a(t′2) = ∆1,a(t′′2) = 0 = ∆2,a(t′1) = ∆2,a(t′′1), we have:
Φ∨(t′1) = {〈b〉1, 〈c〉1} Φ∨(t′′1) = ∅ Φ∨(t′2) = {〈b〉1} Φ∨(t′′2) = {〈c〉1}

If we focus on t′′1 because ∆1,a(t′′1) > ∆2,a(t′′1) and its Φ∨-set is minimal, then
t′′1 6|= 〈b〉1 =| t′2 with 〈b〉1 ∈ Φ∨(t′2) \ Φ∨(t′′1) as well as t′′1 6|= 〈c〉1 =| t′′2 with
〈c〉1 ∈ Φ∨(t′′2)\Φ∨(t′′1). Thus, t1 6|= 〈a〉1 (〈b〉1∨〈c〉1) =| t2 where value 1 decorating
the a-diamond stems from 1−∆2,a(t′′1).

Example 5. For the nodes t5 and t6 in Fig. 1(c), we have:
Φ∨(t5) = {〈a〉1, 〈a〉0.25〈b〉1, 〈a〉0.25〈c〉1, 〈a〉0.5 (〈b〉1 ∨ 〈c〉1)}
Φ∨(t6) = {〈a〉1, 〈a〉0.5〈b〉1, 〈a〉0.5〈c〉1}

The formulas with two diamonds and no disjunction are different in the two sets,
so they are enough for discriminating between t5 and t6. In contrast, the only
formula with disjunction, occurring in Φ∨(t5), is useless because the probability
decorating its a-diamond is equal to the one decorating the a-diamond of each
of the two formulas with two diamonds in Φ∨(t6).

The fact that 〈a〉0.5〈b〉1 ∈ Φ∨(t6) is a distinguishing formula can be retrieved
as follows. Starting from the two identically labeled transitions t5

a−→∆5,a and
t6

a−→∆6,a where ∆5,a(t′5) = ∆5,a(t′′′5 ) = 0.25, ∆5,a(t′′) = 0.5 = ∆6,a(t′6) =
∆6,a(t′′), and ∆5,a(t′6) = 0 = ∆6,a(t′5) = ∆6,a(t′′′5 ), we have:
Φ∨(t′5) = {〈b〉1} Φ∨(t′′′5 ) = {〈c〉1} Φ∨(t′6) = {〈b〉1, 〈c〉1} Φ∨(t′′) = ∅

Notice that t′′ might be useless for discriminating purposes because it has the
same probability in both distributions, so we exclude it. If we focus on t′′′5 because
∆5,a(t′′′5 ) > ∆6,a(t′′′5 ) and its Φ∨-set is minimal after the exclusion of t′′, then
t′′′5 6|= 〈b〉1 =| t′6 with 〈b〉1 ∈ Φ∨(t′6) \ Φ∨(t′′′5 ), while no distinguishing formula is
considered with respect to t′′ as element of supp(∆6,a) due to the exclusion of
t′′ itself. As a consequence, t5 6|= 〈a〉0.5〈b〉1 =| t6 where the value 0.5 decorating
the a-diamond stems from 1− (∆6,a(t′′′5 ) + p) with p = ∆6,a(t′′). The reason for
subtracting the probability that t6 reaches t′′ after performing a is that t′′ 6|= 〈b〉1.

We conclude by observing that focussing on t′′ as derivative with the min-
imum Φ∨-set is indeed problematic, because it would result in 〈a〉0.5〈b〉1 when
considering t′′ as derivative of t5, but it would result in 〈a〉0.5 (〈b〉1 ∨ 〈c〉1) when
considering t′′ as derivative of t6, with the latter formula not distinguishing be-
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tween t5 and t6. Moreover, when focussing on t′′′5 , no formula φ′ could have been
found such that t′′′5 6|= φ′ =| t′′ as Φ∨(t′′) ( Φ∨(t′′′5 ).

The last example shows that, in the general format 〈a〉1−(∆2,a(t′)+p)
∨
j∈J φ

′
2,j

for the PML∨ distinguishing formula mentioned at the beginning of this subsec-
tion, the set J only contains any derivative of the second node different from t′

to which the two distributions assign two different probabilities. No derivative
of the two original nodes having the same probability in both distributions is
taken into account even if its Φ∨-set is minimal – because it might be useless for
discriminating purposes – nor is it included in J – because there might be no
formula satisfied by this node when viewed as a derivative of the second node,
which is not satisfied by t′. Furthermore, the value p is the probability that the
second node reaches the excluded derivatives that do not satisfy

∨
j∈J φ

′
2,j ; note

that the first node reaches those derivatives with the same probability p.
We present two additional examples illustrating some technicalities of Def. 3.

The former example shows the usefulness of the operator ∨̇ and of the function
hplb for selecting the right t′ on the basis of the minimality of its Φ∨-set among the
derivatives of the first node to which the first distribution assigns a probability
greater than the second one. The latter example emphasizes the role played, for
the same purpose as before, by formulas occurring in a Φ∨-set whose number of
nested diamonds is not maximal.

Example 6. For the nodes t9 and t10 in Fig. 1(e), we have:
Φ∨(t9) = {〈a〉1, 〈a〉0.5〈b〉1, 〈a〉0.5〈c〉1}
Φ∨(t10) = {〈a〉1, 〈a〉0.5〈b〉1, 〈a〉0.5〈c〉1, 〈a〉0.6 (〈b〉1 ∨ 〈c〉1)}

Starting from the two identically labeled transitions t9
a−→∆9,a and t10

a−→∆10,a
where ∆9,a(t′) = ∆9,a(t′′) = 0.5, ∆10,a(t′) = ∆10,a(t′′) = 0.4, ∆10,a(t′′′10) =
∆10,a(t′′′′10 ) = 0.1, and ∆9,a(t′′′10) = ∆9,a(t′′′′10 ) = 0, we have:
Φ∨(t′) = {〈b〉1, 〈c〉1} Φ∨(t′′) = ∅ Φ∨(t′′′10) = {〈b〉1} Φ∨(t′′′′10 ) = {〈c〉1}

If we focus on t′′ because ∆9,a(t′′) > ∆10,a(t′′) and its Φ∨-set is minimal, then
t′′ 6|= 〈b〉1 =| t′ with 〈b〉1 ∈ Φ∨(t′) \ Φ∨(t′′), t′′ 6|= 〈b〉1 =| t′′′10 with 〈b〉1 ∈ Φ∨(t′′′10) \
Φ∨(t′′), and t′′ 6|= 〈c〉1 =| t′′′′10 with 〈c〉1 ∈ Φ∨(t′′′′10 )\Φ∨(t′′). Thus, t9 6|= 〈a〉0.6 (〈b〉1∨
〈c〉1) =| t10 where the formula belongs to Φ∨(t10) and the value 0.6 decorating
the a-diamond stems from 1−∆10,a(t′′).

If ∨ were used in place of ∨̇, then in Φ∨(t10) we would also have formulas
like 〈a〉0.5 (〈b〉1 ∨ 〈b〉1) and 〈a〉0.5 (〈c〉1 ∨ 〈c〉1). These are useless in that logically
equivalent to other formulas already in Φ∨(t10) in which disjunction does not
occur and, most importantly, would apparently augment the size of Φ∨(t10), an
inappropriate fact in the case that t10 were a derivative of some other node
instead of being the root of a tree.

If hplb were not used, then in Φ∨(t10) we would also have formulas like
〈a〉0.1〈b〉1, 〈a〉0.4〈b〉1, 〈a〉0.1〈c〉1, and 〈a〉0.4〈c〉1, in which the probabilistic lower
bounds of the a-diamonds are not maximal with respect to the satisfiability of
formulas of that form by t10; those with maximal probabilistic lower bounds
associated with a-diamonds are 〈a〉0.5〈b〉1 and 〈a〉0.5〈c〉1, which already belong
to Φ∨(t10). In the case that t9 and t10 were derivatives of two nodes under
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comparison instead of being the roots of two trees, the presence of those additional
formulas in Φ∨(t10) may lead to focus on t10 instead of t9 – for reasons that will
be clear in Ex. 8 – thereby producing no distinguishing formula.

Example 7. For the nodes t11, t12, t13 in Fig. 1(f), we have:
Φ∨(t11) = {〈a〉1} Φ∨(t12) = {〈a〉1, 〈a〉1〈b〉1} Φ∨(t13) = {〈a〉1, 〈a〉0.7〈b〉1}
Let us view them as derivatives of other nodes, rather than roots of trees. The
presence of formula 〈a〉1 in Φ∨(t12) and Φ∨(t13) – although it has not the maxi-
mum number of nested diamonds in those two sets – ensures the minimality of
Φ∨(t11) and hence that t11 is selected for building a distinguishing formula. If
〈a〉1 were not in Φ∨(t12) and Φ∨(t13), then t12 and t13 could be selected, but no
distinguishing formula satisfied by t11 could be obtained.

The criterion for selecting the right t′ based on the minimality of its Φ∨-set
has to take into account a further aspect related to formulas without disjunctions.
If two derivatives – with different probabilities in the two distributions – have
the same formulas without disjunctions in their Φ∨-sets, then a distinguishing
formula for the two nodes will have disjunctions in it (see Exs. 4 and 6). If the
formulas without disjunctions are different between the two Φ∨-sets, then one of
them will tell the two derivatives apart (see Ex. 3).

A particular instance of the second case is the one in which for each formula
without disjunctions in one of the two Φ∨-sets there is a variant in the other
Φ∨-set – i.e., a formula without disjunctions that has the same format but may
differ for the values of some probabilistic lower bounds – and vice versa. In
this event, regardless of the minimality of the Φ∨-sets, it has to be selected the
derivative such that (i) for each formula without disjunctions in its Φ∨-set there
exists a variant in the Φ∨-set of the other derivative such that the probabilistic
lower bounds in the former formula are ≤ than the corresponding bounds in the
latter formula and (ii) at least one probabilistic lower bound in a formula without
disjunctions in the Φ∨-set of the selected derivative is < than the corresponding
bound in the corresponding variant in the Φ∨-set of the other derivative. We say
that the Φ∨-set of the selected derivative is a (≤, <)-variant of the Φ∨-set of the
other derivative.

Example 8. Let us view the nodes t5 and t6 in Fig. 1(c) as derivatives of other
nodes, rather than roots of trees. Based on their Φ∨-sets shown in Ex. 5, we
should focus on t6 because Φ∨(t6) contains fewer formulas. However, by so doing,
we would be unable to find a distinguishing formula in Φ∨(t5) that is not satisfied
by t6. Indeed, if we look carefully at the formulas without disjunctions in Φ∨(t5)
and Φ∨(t6), we note that they differ only for their probabilistic lower bounds:
〈a〉1 ∈ Φ∨(t6) is a variant of 〈a〉1 ∈ Φ∨(t5), 〈a〉0.5〈b〉1 ∈ Φ∨(t6) is a variant of
〈a〉0.25〈b〉1 ∈ Φ∨(t5), and 〈a〉0.5〈c〉1 ∈ Φ∨(t6) is a variant of 〈a〉0.25〈c〉1 ∈ Φ∨(t5).
Therefore, we must focus on t5 because Φ∨(t5) contains formulas without dis-
junctions such as 〈a〉0.25〈b〉1 and 〈a〉0.25〈c〉1 having smaller bounds: Φ∨(t5) is a
(≤, <)-variant of Φ∨(t6).

Consider now the nodes t9 and t10 in Fig. 1(e), whose Φ∨-sets are shown in
Ex. 6. If function hplb were not used and hence Φ∨(t10) also contained 〈a〉0.1〈b〉1,
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〈a〉0.4〈b〉1, 〈a〉0.1〈c〉1, and 〈a〉0.4〈c〉1, then the formulas without disjunctions in
Φ∨(t9) would no longer be equal to those in Φ∨(t10). More precisely, the formulas
without disjunctions would be similar between the two sets, with those in Φ∨(t10)
having smaller probabilistic lower bounds, so that we would erroneously focus
on t10.

Summing up, in the PML∨ distinguishing formula 〈a〉1−(∆2,a(t′)+p)
∨
j∈J φ

′
2,j ,

the steps for choosing the derivative t′, on the basis of which each subformula
φ′2,j is then generated so that it is not satisfied by t′ itself, are the following:

1. Consider only derivatives to which ∆1,a assigns a probability greater than
the one assigned by ∆2,a.

2. Within the previous set, eliminate all the derivatives whose Φ∨-sets have
(≤, <)-variants.

3. Among the remaining derivatives, focus on one of those having a minimal
Φ∨-set.

Theorem 6. Let (T,A,−→) be in RPTf and t1, t2 ∈ T . Then t1 = t2 iff t1 |=
φ ⇐⇒ t2 |= φ for all φ ∈ PML∨. Moreover, if t1 6= t2, then there exists φ ∈
PML∨ distinguishing t1 from t2 such that depth(φ) ≤ max(height(t1), height(t2)).

4.4 PML∧ Characterizes ∼PB: A Direct Proof for Discrete Systems

By adapting the proof of Thm. 6 consistently with the proof of Thm. 4, we can
also prove that PML∧ characterizes ∼PB by working directly on discrete state
spaces.

The idea is to obtain t1 |= 〈a〉∆1,a(t′)+p
∧
j∈J φ

′
2,j 6=| t2. For any node t of

finite height, we define the set Φ∧(t) of PML∧ formulas satisfied by t featuring,
in addition to maximal probabilistic lower bounds and diamonds arising only
from transitions of t as for Φ∨(t), conjunctions that (i) stem only from transi-
tions departing from the same node in the support of a distribution reached by t
and (ii) are preceded by a diamond decorated with the sum of the probabilities
assigned by that distribution to that node and other nodes with the same tran-
sitions considered for that node. Given t having transitions of the form t

ai−→∆i

with supp(∆i) = {t′i,j | j ∈ Ji} and i ∈ I 6= ∅, we let: Φ∧(t) = {〈ai〉1 | i ∈ I} ∪⋃
i∈I

splb({| 〈ai〉∆i(t′
i,j

)
∧

k∈K′
φ′i,j,k | ∅ 6=K ′⊆Ki,j , t

′
i,j ∈supp(∆i), φ′i,j,k∈Φ∧(t′i,j) |})

where {| and |} are multiset parentheses, Ki,j is the index set for Φ∧(t′i,j), and
function splb merges all formulas possibly differring only for the probabilistic
lower bound decorating their initial ai-diamond by summing up those bounds
(such formulas stem from different nodes in supp(∆i)).

A good criterion for choosing t′ occurring in the PML∧ distinguishing formula
at the beginning of this subsection is the maximality of the Φ∧-set. Moreover,
in that formula J only contains any derivative of the second node different
from t′ to which the two distributions assign two different probabilities, while
p is the probability of reaching derivatives having the same probability in both
distributions that satisfy

∧
j∈J φ

′
2,j . Finally, when selecting t′, we have to leave

out all the derivatives whose Φ∧-sets have (≤, <)-variants.
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Theorem 7. Let (T,A,−→) be in RPTf and t1, t2 ∈ T . Then t1 = t2 iff t1 |=
φ ⇐⇒ t2 |= φ for all φ ∈ PML∧. Moreover, if t1 6= t2, then there exists φ ∈
PML∧ distinguishing t1 from t2 such that depth(φ) ≤ max(height(t1), height(t2)).

5 Conclusions

In this paper, we have studied modal logic characterizations of strong bisimilarity
over reactive probabilistic processes. Starting from previous work by Larsen and
Skou [12] (who provided a characterization based on a probabilistic extension
of Hennessy-Milner logic) and by Desharnais, Edalat, and Panangaden [6] (who
showed that negation is not necessary), we have proved that conjunction can
be replaced by disjunction without having to reintroduce negation. Thus, in the
reactive probabilistic setting, conjunction and disjunction are interchangeable to
characterize (bi)simulation equivalence, while they are both necessary for simu-
lation preorder [7]. As a side result, with our proof technique we have provided
alternative proofs of the expressiveness of PML¬∧ and PML∧.

The intuition behind our result is that from a conjunctive distinguishing
formula it is often possible to derive a disjunctive one by suitably increasing some
probabilistic lower bounds. On the model side, this corresponds to summing up
the probabilities of reaching certain states that are in the support of a target
distribution. In fact, a state of an RPLTS can be given a semantics as a reactive
probabilistic tree, and hence it is characterized by the countable set of formulas
(approximated by the Φ∨-set) obtained by doing finite visits of the tree.

On the application side, the PML∨-based characterization of bisimilarity
over reactive probabilistic processes may help to prove a conjecture in [4]. This
work studies the discriminating power of three different testing equivalences
respectively using reactive probabilistic tests, fully nondeterministic tests, and
nondeterministic and probabilistic tests. Numerous examples lead to conjecture
that testing equivalence based on nondeterministic and probabilistic tests may
have the same discriminating power as bisimilarity. Given two ∼PB-inequivalent
reactive probabilistic processes, the idea of the tentative proof is to build a dis-
tinguishing nondeterministic and probabilistic test from a distinguishing PML∧
formula. One of the main difficulties with carrying out such a proof, i.e., the fact
that choices within tests fit well together with disjunction rather than conjunction,
may be overcome by starting from a distinguishing PML∨ formula.
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Abstract. Much research has studied foundations for correct and reliable
communication-centric systems. A salient approach to correctness uses
session types to enforce structured communications; a recent approach
to reliability uses reversible actions as a way of reacting to unanticipated
events or failures.
This note describes recent work that develops a simple observation: the
machinery required to define monitored semantics can also support re-
versible protocols. We illustrate a process framework of session commu-
nication in which monitors support reversibility. A key novelty in our
approach are session types with present and past, which allow us to
streamline the semantics of reversible actions.

1 Introduction

The purpose of this short paper is to motivate and describe our ongoing work in
reversible models of structured communications [8]. Framed within concurrency
theory and process calculi approaches, we are interested in developing rich models
of concurrent computation in which communicating processes follow structured
interaction protocols (as described by session types [3]), and whose underlying
operational semantics admits the possibility of reversing their actions. This inte-
gration of structured communication and reversibility should inform the design of
sound programming abstractions for resilient communicating programs governed
by casual consistent semantics.

Models of reversible computation and structured communications have re-
ceived much attention (cf. [1,3]). Reversing computational steps is an appealing
feature in different scenarios; for instance, in the case of a failure in a (concurrent)
program or transaction, we might like to undo all steps leading to the failure, so
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as to return to last known stable state of the system. Indeed, good examples of
how reversibility can be used to model transactional models are [2,6]. The design
of reversible semantics for models of concurrency is a delicate issue, for we would
like to undo computational steps in a causally consistent fashion: a step should
be undone only if all its causes (if any) have been already undone. In this way,
reversibility in a causal consistent model leads to a system state that could have
been reached by performing forward steps only.

The key observation that underlies our work is that the design of casually
consistent operational semantics for concurrent processes can take advantage of
the structured protocols that typically govern their behavior. As session types
abstract sequences of communication actions (protocols), they appear as a natural
choice for recording the forward and backward actions of interacting processes.

In recent work, we have started to formalize the integration of reversibility
and session-based concurrency [8]. In this note, we illustrate the model in [8] by
means of a simple example that contains the main ingredients of our approach,
namely an operational semantics for untyped processes which is instrumented by
monitors that contain protocols specified as session types. In order to support
both forward and backward steps, we consider session types that describe both
past and present protocol states.

2 Reversible Sessions, By Example

Our proposal builds upon the approach of models of concurrency such as the π-
calculus. As such, main ingredients in our approach are configurations, processes,
and (protocol) types, whose syntax is given in Figure 1. We assume a language
of the expressions e, e′, . . . that includes basic values, variables, and functions on
them. The syntax of configurations includes the empty configuration 0, name
restriction νn.M , parallel composition M ‖ N , but also running processes and
monitors:

– A running process
〈
P · σ · ũ

〉
s̃
is univocally identified by s̃, the list of session

endpoints occurring in P . The local store σ is a list of pairs of the form
{x, ṽ} (i.e., a set of mappings from variables to values); the list ũ collects the
subjects of actions already performed by P .

– Given a session name s, a monitor sbH · ẽc contains a protocol (session) type
H that describes the structured behavior associated to s (see below) and a
list ẽ containing all the expressions (including variables) used by the process.

Intuitively, the list ũ in the running process and the list ẽ in the monitor will be
used to record previously performed actions and reconstruct the process structure
accordingly.

The design of the operational semantics for our model is inspired by the ap-
proach of [5], in which session types are used as monitors that enable communica-
tion actions: a synchronization can only occur if the process actions correspond
to the intended protocols given by the monitor types. After synchronization, por-
tions of both processes and monitor types are consumed. Our approach consists
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(configurations) M,N ::= 0 | 〈P · σ · ũ〉
s̃
| sbH · ẽc | νn.M | M ‖ N

(processes) P,Q ::= u(x : S).P | u〈x : S〉.P | k〈e〉.P | k(x).P | νa.P | 0

(actions) α, β ::= !U | ?U (protocol types) S, T ::= end | α.S
(history types) H,K ::= ^ S | S ^ | α1. · · · .αn. ^ S

Fig. 1. Syntax of Configurations, Processes, and Types.

in keeping, rather than consuming, these monitor types. For this to work, we need
to distinguish the part of the protocol that has been already executed (its past),
from the protocol that still needs to execute (its present). We thus introduce
session types with present and past (H in the syntax): the type α1. · · · .αn.^ S
says that actions α1, · · · , αn are past protocol actions, whereas actions in proto-
col S are yet to be executed. That is, the cursor ^ in history types helps us to
distinguish the past from the present. Each action αi corresponds to the input
or output of a value; we use U to range over the types of these values (e.g., int,
str, etc.).

We illustrate our approach by means of a simple business protocol example [4]:
a slightly modified version of the two buyers protocol. It involves three participants:
a Buyer, a Seller, and a Buyer’s Friend. Buyer is willing to buy a book, and sends
to Seller the title of the book he is interested in. Seller replies with the price
of the book, and awaits for final information (e.g., shipping address and order
confirmation) from Buyer, before providing a delivery date. Once Buyer receives
the price, he realizes that he needs a loan from Friend in order to finalize the
purchase. To this aim, Buyer contacts Friend and then the transaction is finalized.
The set of interactions of Buyer with Seller and Friend are prescribed by the
following session types:

Sa : ?str.!int.?str.?int.!cal.end Sb : ?int.!int.end

Ta : !str.?int.!str.!int.?cal.end Tb : !int.?int.end

Above, Sa describes the interaction between Buyer and Seller from Seller’s per-
spective; type Ta is its dual and describes the protocol from Buyer’s perspective.
In session types, duality is essential to (statically) ensure action compatibility
between partners (and therefore, to guarantee absence of communication errors).
Types Tb and Sb describe the interaction between Buyer and Friend, from each
perspective.

Having defined the interaction protocols using types, we proceed to examine
some possible process implementations for Buyer, Seller, and Friend. The behavior
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of Buyer may be specified by the following process:

Buyer , a〈z : Ta〉.z〈“dune”〉.z(prc).
b〈w : Tb〉.w〈loan(prc)〉.w(cash).z〈addr〉.z〈cash〉.z(date).0

The implementation for Buyer involves the creation of two interleaved sessions:
the first one is established with the prefix a〈z : Ta〉, which explicitly mentions
the session protocol to be executed with the implementation of Seller; the sec-
ond session is established with the implementation of Friend through the prefix
b〈w : Tb〉. Process implementations for Seller and Friend can be specified by the
following processes:

Seller , a(z : Sa).z(title).z〈quote(title)〉.z(addr).z(paymnt).z〈date(addr)〉.0
Friend , b(w : Sb).w(amount).w〈loan〉.0

Note that functions loan(), quote() and date() are used to calculate the amount
of money to be borrowed, the book price and the delivery date, respectively.
The overall system specification is then given by the parallel composition of
configurations containing the three processes (in what follows, ε denotes the
empty list):

System ,
〈
Buyer · ε · ε

〉
ε
‖
〈
Seller · ε · ε

〉
ε
‖
〈
Friend · ε · ε

〉
ε

In the following, we will indicate with Buyeri (resp. Selleri and Friendi)
the process Buyer after performing its i-th action. We will do the same with
types.

The operational semantics that we have defined in [8] is based on a reduction
relation with both forward and backward steps, denoted � and  , respectively.
The first forward reduction of System is establishing a session between Buyer
and Seller, using the fact that Ta and Sa are dual types. We have:

System �(νs, s).
(〈

Buyer1 · {z, s} · a
〉
s
‖ sb^ Ta · zc ‖〈

Seller1 · {z, s} · a
〉
s
‖ sb^ Sa · zc ‖

〈
Friend · ε · ε

〉
ε

)
(1)

As we can see, once a session is established two monitors are created, one per
endpoint; their task is to discipline the behavior of the process holding the
endpoint. For example, the behavior of Buyer in session s has to obey type Sa.
Buyer then sends (according to Sa) to Seller the request for the book, and the
entire system evolves as:

�(νs, s).
(〈

Buyer2 · ({z, s}) · a, z
〉
s
‖ sb!str^ Ta1 · z, “dune”c ‖〈

Seller2 · ({z, s}, {title, “dune”}) · a, z
〉
s
‖

sb?str^ Sa1 · z, titlec ‖
〈
Friend · ε · ε

〉
ε

)
= M (2)
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As effect of the communication, both types register the action and move forward.
Another effect is that the information needed to restore back the consumed
prefixes is stored into the running configurations and the related monitors. Com-
munication in (2) can be reverted by moving backward the monitor types, by
restoring the prefixes and deleting the read value from the receiver store, that is:

M  (νs, s).
(〈
z〈“dune”〉.Buyer2 · ({z, s} · a

〉
s
‖ sb^ !str.Ta1 · zc ‖〈

z(title).Seller2 · {z, s} · a
〉
s
‖ sb^ ?str.Sa1 · zc ‖

〈
Friend · ε · ε

〉
ε

)
(3)

We can easily check that the configurations in (3) and (1) are equivalent. FromM
in (2) the interaction between Buyer and Seller goes on, and the system arrives
to a point in which Buyer establishes a new session with Friend:

M �∗(νs, s, r, r).
(〈

Buyer4 · ({z, s}, {w, r}) · ũ1, b
〉
s,r
‖

rb ^ Tb · bc ‖ sbT ′a ^ Ta3 · z, “dune”, prc, wc ‖〈
Seller3 · ({z, s}, {title, “dune”}) · a, z, z

〉
s
‖

sbS′a ^ Sa3 · z, title, quote(title)c ‖
〈
Friend1 · {w, r} · b

〉
r
‖ rb^ Sb · wc

)
(4)

As (4) shows, the running process for Buyer is present in two sessions: one with
Seller and another one with Friend, and has two associated monitors, identified
by endpoints s, r. The list of subjects stored into the running process allows us to
reverse communications (possibly in different sessions) and session establishments
in the order in which they were performed, thus respecting causality of actions.
In this way, Buyer cannot undo a communication with Seller while the session
with Friend is still established.

3 Future Work

We have described recent work on the integration of reversible semantics and
session-based concurrency [8]. It represents a fresh approach with respect to
previous approaches [9]. Several directions deserve further investigation:

– Richer (typed) languages. The process model in [8] is admittedly simple; to
model and reason about interesting examples we need support for constructs
such as labeled choices. Also, process specifications do not specify reversible
actions; this is the role of monitors, history types, and other mechanisms.
Since reversibility is independent from specifications, rich types are needed
to support controlled forms of reversibility. In recent work we propose alter-
natives to these challenges [7].
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– Multiparty session communications. The model in [8] concerns binary session
types, which codify interaction between exactly two partners. Generalizing
our approach tomultiparty session types [4] should require a finer, coordinated
representation of reversible actions, as protocol exchanges may involve more
than two participants.

– Dedicated reasoning techniques. Session types induce a “simpler” model of
concurrency in which reversibility is a better behaved phenomenon. It re-
mains to be seen to what extent such a setting enables the development of
tractable reasoning techniques (e.g., axiomatizations, behavioral equivalences,
and proof systems).
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Abstract. Many distributed software systems are communication-cen-
tric: they are composed of heterogeneous software artifacts that interact
following precise communication structures (protocols). One much-studied
approach to system analysis equips process calculi with behavioral types
(such as session types) so to abstract protocols and verify interacting
programs. Unfortunately, existing behaviorally typed frameworks do not
adequately support reactive behavior, an increasingly relevant feature in
protocols. To address this shortcoming, We have been exploring how
the synchronous programming paradigm can uniformly support the for-
mal analysis of reactive, communication-centric programs. In this short
communication, we motivate our approach and report on ongoing devel-
opments.

1 Introduction

In this short note, we describe our ongoing work on a reactive programming model
for communication-centric software systems. While most previous work relies on
models based on the π-calculus [14], we are developing practical support for
communication-centric software systems using ReactiveML [13], a synchronous
programming language with functional and reactive features, and which relies
on solid formal foundations.

In communication-centric software systems, collections of heterogeneous soft-
ware artifacts usually follow well-defined communication structures, or protocols.
Ensuring that programs conform to these protocols is key to certify system cor-
rectness. One much-studied approach to the analysis of communicating programs
uses behavioral types [12], a type-based verification technique that captures com-
plex communication structures while enforcing resource-usage policies. Session
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Reliable Large-Scale Software Systems) and CNRS PICS project 07313 (SuCCeSS).

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 227–233
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720



228 Jaime Arias, Mauricio Cano, and Jorge A. Pérez

types [11] are a class of behavioral types that organize protocols as sessions be-
tween two or more participants; a session type describes the contribution of each
partner to the protocol. First formulated as a type theory for the π-calculus,
session-based concurrency has been implemented as communication libraries for
mainstream languages, such as OCaml [15] and Scala [16].

One shortcoming of existing implementations is that they are based on
overly rigid programming models. In particular, current practical support for
communication-centric software systems does not explicitly consider reactive
behavior in communicating programs. This is a crucial feature, especially as
autonomous agents can now engage into protocols in our behalf (e.g., financial
transactions). In fact, reactive behavior is central in realistic implementations
of protocols with, e.g., exception handling, dynamic reconfiguration, and time.
While these features can be represented in languages based on the π-calculus
(cf. e.g., [6,3]), resulting models are often difficult or unnatural to reason about.
Session types themselves focus on representing communication structures and
thus abstract away from aspects related to reactivity. As protocols in emerging
applications are increasingly subject to external stimuli/events (typically hard to
predict), developing programming support that uniformly integrates structured
communications and flexible forms of reactive behavior appears as a pressing
need.

To our knowledge, the amalgamation of reactive behavior into models of struc-
tured communications has been little explored by previous works (see, e.g., [9]).
Our efforts have been triggered by our declarative interpretation of session-based
concurrency [5]. Our current work goes beyond the interpretation in [5] so to con-
sider reactive and declarative behavior from a programming languages perspective.
To this end, we have developed an implementation of sessions in ReactiveML [13],
supported by a formal translation of session processes as ReactiveML programs.
Based on our preliminary results, we believe that models of reactive programming
improve previous works by offering a uniform basis for expressing and reasoning
about different kinds of constructs.

2 Session Types

Session types offer a type-based methodology to the validation of communicating
programs [11]. Structured dialogues (protocols) between interacting parties are
represented as sessions; sequences of interactions along each channel in the
program/process are then abstracted as types, which can be used to (statically)
verify whether a program conforms to its intended protocols. Key properties
are fidelity (programs respect prescribed protocols) and communication safety
(programs do not have errors, e.g., communication mismatches). The syntax of
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(binary) session types T, S is as follows:

!T.S Output a value of type T , continue as type/protocol S
?T.S Receive a value of type T , continue as type/protocol S
&{li : Ti}i∈I External choice among labeled types/protocols Ti (branching)
⊕{li : Ti}i∈I Internal choice of a labeled type/protocol Tj , with j ∈ I (selection)
µX.T Recursive protocol/type (with type variable X)
end Terminated protocol

In session-based concurrency, the notion of duality is key to ensure communication
safety. Intuitively, duality relates session types with opposite behaviors: e.g., the
dual of input is output, and vice versa; branching is the dual of selection, and
vice versa.

We illustrate session types using a traditional example in the literature: the
Buyer-Seller-Shipper protocol, which can be informally described as follows:

1. Buyer requests an item from Seller.
2. Seller replies back asking for Buyer’s unique address.
3. Buyer sends his address to Seller, confirming the order.
4. Seller forwards Buyer’s address to Shipper.
5. Shipper sends to Buyer the estimated delivery time.
6. Buyer confirms to Shipper his availability for receiving the item.

We may formalize this protocol using the following session types:

BuySell = !item.?confirmation.!address.end SellShip = !address.end
ShipBuy = !ETA.&{yes :!ok.end, no :!bye.end}

where item, confirmation, address, and ETA denote basic types. Type BuySell
describes interactions between Buyer and Seller from Buyer’s perspective. Simi-
larly, SellShip describes an interaction from Seller’s perspective, and ShipBuy
takes the standpoint of Shipper in communications. Complementary types can
be obtained using duality. These three sessions take place in order, as in the
informal description above.

3 A Reactive Approach to Communication-Centric
Systems

The protocol presented before is well-suited for deployment using traditional
technologies (e.g., web services). However, it does not consider the possibility of
changes at runtime due to unexpected circumstances or external events. Moreover,
the protocol is not suited to emerging scenarios in which protocol partners are
deployed in, e.g., mobile devices with limited computational power and availability.
For instance, it is easy to imagine Shipper being implemented by a drone with
communication capabilities.

To address these shortcomings of protocol descriptions in session-based con-
currency, we propose to use reactive behavior, as present in synchronous reactive
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programming. In this context, we can envision a reactive variant of the Buyer-
Seller-Shipper protocol, in which Shipper is a drone, and Buyer communicates
from a mobile phone. In this variant of the protocol, the first six steps are as
before; after Steps 1–6, an event from Buyer to Seller triggers the following
protocol:

R1. Buyer adds an item to his recently completed order.
R2. Seller replies back confirming the modified order.
R3. Seller forwards the modified order to Shipper.
R4. Shipper replies back in one of the following ways:

a) Shipper returns back to the store, picks up the new item, and confirms
to Buyer the previously given estimated delivery time, or

b) Shipper continues with the original order, and informs Buyer that the
second item will be delivered separately.

That is, in the reactive Buyer-Seller-Shipper protocol some of the exchanges are
“standard” or “default” (cf. Steps 1-6); there are also other exchanges that are
executed as a reaction to some event or external circumstance (cf. Steps R1-R4).
In the latter steps, the external event concerns the request by Buyer of modifying
his order; other conceivable conditions include, e.g., drone malfunctioning and
wrong/delayed package deliveries. These extra exchanges also constitute struc-
tured protocols, amenable to specification and validation using sessions; however,
their occurrence can be very hard to predict.

Synchronous Reactive Programming and ReactiveML. Synchronous Reactive
Programming (SRP) is an event-based model of computation, optimized for
programming reactive systems [1]. Synchronous languages are based on the
hypothesis of perfect synchrony: reactive programs respond instantaneously and
produce their outputs synchronously with their input. A synchronous program
is meant to deterministically react to events coming from the environment: in
essence, it evolves through an infinite sequence of successive reactions indexed by
a global logical clock. During a reaction, each system component computes new
output values based on the input values and its internal state; the communication
of all events between components occurs synchronously during each reaction.
Reactions are required to converge and computations are entirely performed
before the current execution instant ends and the next one begins. This notion of
time enables SRP programs to have an order in the events of the system, which
makes it possible to reason about some time-related properties [8,10].

ReactiveML is an SRP-based extension to the OCaml programming lan-
guage [13], based on the reactive model presented in [4]. This model allows
unbounded time response from processes and avoids causality issues that can
occur in other approaches to SRP, such as the one used by ESTEREL [2]. Reac-
tiveML extends OCaml with the notion of processes, which are state machines
whose behavior can be executed through several logical instants. Processes are
considered the reactive counterpart of OCaml functions, which are considered as
instantaneous in ReactiveML.
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In ReactiveML, synchronization is based on signals: events that occur in
one logical instant. Signals can trigger reactions in processes, to be executed
instantaneously or in the next time unit. Signals can carry values and can be
emitted from different processes in the same logical instant. There are three basic
ReactiveML constructs:

emit s v emits signal s with value v.
await one s <e> in P awaits a value along signal s that is pattern-

matched to expression <e>. Process P is exe-
cuted in the next instant.

signal s in P declares signal s and bounds it to continuation
P.

Our Current Work: Structured Communications in SRP. Models of communication-
centric systems (such as session types) usually rely on directed exchanges along
named channels. However, in SRP there is no native notion of channels: as we
have seen, signals are the main synchronization unit in ReactiveML. To deal with
this discrepancy, a key idea in our work is “simulating” channels using signals.
To this end, and since we would like to represent protocols respecting linearity,
we follow the representation of session channels in [7], which uses a continuation-
passing style. This means that for each interaction within a communication
structure a new channel is created.

We describe our ReactiveML implementation for Seller in the reactive Buyer-
Seller-Shipper protocol. Recall that Seller is involved in two sessions: he first
communicates with Client, then interactions with Shipper occur. In the code
below we assume that all sessions have been already initiated; these are noted
cb for Buyer and cs for Seller.

let process seller conf =
await one cb (item,y) in signal c1 in
emit y (conf,c1);pause;
await one c1 (addr,u) in signal c2 in
emit cs (addr,c2);pause

The code declares seller as a process in ReactiveML (a non-instantaneous
function); we describe its body. The first line awaits a signal cb, which carries a
pair of elements: a value and a reference to the signal where further interactions
will occur (i.e., y). Then, a signal c1, where the next interaction will occur, is
declared. Subsequently, a pair (containing a message conf and a reference to
signal c1) is emitted over signal y; no further actions are taken in this time unit.
Once the message is received by Buyer, seller awaits Buyer’s address. At this
point, the first session has finished and communication with Shipper begins. In
the last line, Buyer’s address is sent to Shipper.

Notice that once seller is finished, so is any communication from Seller. But
in the reactive protocol, Seller must await possible further actions from either
Buyer or Shipper. To implement this key feature, we extend the previous code
with the following line of code: await one g (v,e) in P. This new line puts
seller to “sleep" until an event/signal g from either Buyer or Seller triggers a new
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reaction P from it. Note that this signal for interrupts or events should be known
to every party in the communication. The idea is then that the continuation
process P should decide which course of action to take depending on the value
carried by g. In our reactive protocol, process P could implement Steps R1-R4,
following the implementation scheme of seller.

4 Concluding Remarks

We have described our ongoing implementation of essential features of session-
based concurrency in ReactiveML, a reactive functional programming language.
Our implementation uses ReactiveML processes to handle usual session protocols
(send, receive, select, and branch constructs). We believe that our approach is
already on a par with other session implementations (such as [15]) with substantial
room for improvement, due to the reactive behavior supported by ReactiveML.
We expect our research to enable the practical use of session-based concurrency
into emerging application scenarios, such as, e.g., Collective Adaptive Systems
(CAS).

References
1. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Si-

mone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–
83, 2003.

2. G. Berry and G. Gonthier. The esterel synchronous programming language: Design,
semantics, implementation. Sci. Comput. Program., 19(2):87–152, 1992.

3. L. Bocchi, W. Yang, and N. Yoshida. Timed multiparty session types. In Proc. of
CONCUR’14, volume 8704, pages 419–434. Springer, 2014.

4. F. Boussinot and R. de Simone. The SL synchronous language. IEEE Trans.
Software Eng., 22(4):256–266, 1996.

5. M. Cano, C. Rueda, H. A. López, and J. A. Pérez. Declarative interpretations of
session-based concurrency. In Proc. of PPDP’15, pages 67–78. ACM, 2015.

6. M. Carbone. Session-based choreography with exceptions. Electr. Notes Theor.
Comput. Sci., 241:35–55, 2009.

7. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In Proc. of
PPDP’12, pages 139–150, 2012.

8. R. de Simone, J. Talpin, and D. Potop-Butucaru. The synchronous hypothesis and
synchronous languages. In Embedded Systems Handbook. CRC Press, 2005.

9. X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theor. Comput. Sci., 328(1-2):19–37,
2004.

10. A. Gamati. Designing Embedded Systems with the SIGNAL Programming Language:
Synchronous, Reactive Specification. Springer, 1st edition, 2009.

11. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Dis-
cipline for Structured Communication-Based Programming. In Proc. of ESOP’98,
volume 1381, pages 122–138. Springer, 1998.

12. H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavattaro.
Foundations of session types and behavioural contracts. ACM Comput. Surv.,
49(1):3:1–3:36, Apr. 2016.



Towards A Practical Model of Reactive Communication-Centric Software 233

13. L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML. In Proc. of
PPDP’05, pages 82–93. ACM, 2005.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf. Comput.,
100(1):1–40, 1992.

15. L. Padovani. FuSe - A simple library implementation of binary sessions. URL:
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html.

16. A. Scalas and N. Yoshida. Lightweight session programming in scala. In ECOOP
2016, LIPIcs. Dagstuhl, 2016.

http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html


Minimal and Reduced Reversible Automata?

(Extended Abstract)

Giovanna J. Lavado, Giovanni Pighizzini, and Luca Prigioniero

Dipartimento di Informatica, Università degli Studi di Milano, Italy
{lavado,pighizzini}@di.unimi.it, luca.prigioniero@studenti.unimi.it

Abstract. A condition characterizing the class of regular languages
which have several nonisomorphic minimal reversible automata is pre-
sented. The condition concerns the structure of the minimum automaton
accepting the language under consideration.
It is also observed that there exist reduced reversible automata which are
not minimal, in the sense that all the automata obtained by merging some
of their equivalent states are irreversible. Furthermore, it is proved that
if the minimum deterministic automaton accepting a reversible language
contains a loop in the “irreversible part” then it is always possible to
construct infinitely many reduced reversible automata accepting such a
language.

1 Introduction

A device is said to be reversible when each configuration has exactly one pre-
decessor and one successor, thus implying that there is no loss of information
during the computation. On the other hand, as observed by Landauer, logical irre-
versibility is associated with physical irreversibility and implies a certain amount
of heat generation [7]. In order to avoid such a power dissipation and, hence, to
reduce the overall power consumption of computational devices, the possibility
of realizing reversible machines looks appealing.

A lot of work has been done to study reversibility in different computational
devices. Just to give a few examples, in the case of general devices as Turing
machines Bennet proved that each machine can be simulated by a reversible
one [2], while Lange, McKenzie, and Tapp proved that each deterministic machine
can be simulated by a reversible machine which uses the same amount of space [8].
As a corollary, in the case of a constant amount of space, this implies that
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each regular language is accepted by a reversible two-way deterministic finite
automaton. Actually, this result was already proved by Kondacs and Watrous [4].

However, in the case of one-way automata, the situation is different.1 In fact,
as shown by Pin, the regular language a∗b∗ cannot be accepted by any reversible
automaton [10]. So the class of languages accepted by reversible automata is
a proper subclass of the class of regular languages. Actually, there are some
different notions of reversible automata in literature. In 1982, Angluin intro-
duced reversible automata in algorithmic learning theory, considering devices
having only one initial and only one final state [1]. On the other hand, the de-
vices considered in [10], besides a set of final states, can have multiple initial
states, hence they can take a nondeterministic decision at the beginning of the
computation. An extension which allows one to consider nondeterministic transi-
tions, without changing the class of accepted languages, has been considered by
Lombardy [9], introducing and investigating quasi reversible automata. Classical
automata, namely automata with a single initial state and a set of final states,
have been considered in the works by Holzer, Jakobi, and Kutrib [5,3,6]. In par-
ticular, in [3] the authors obtained a characterization of regular languages which
are accepted by reversible automata. This characterization is given in terms
of the structure of the minimum deterministic automaton. Furthermore, they
provide an algorithm that, in the case the language is acceptable by a reversible
automaton, allows one to transform the minimum automaton into an equivalent
reversible automaton, which in the worst case is exponentially larger than the
given minimum automaton. In spite of that, the resulting automaton is minimal,
namely there are no reversible automata accepting the same language with a
smaller number of states. However, the minimal automaton is not necessarily
unique, in fact there could exist different reversible automata with the same
number of states accepting the same language.

We continue the investigation of minimality in reversible automata and we
will refer to the following notions. Let C be the family of reversible automata
accepting a given language L and A ∈ C:

– The automaton A is reduced in C if every automaton obtained from A by
merging some equivalent states does not belong to C.

– The automaton A is minimal in C if each automaton in C has at least as
many states as A.

– The automaton A is the minimum in C if it is the unique (up to isomorphism)
minimal automaton in C.

Our first result is a condition that characterizes languages having several different
minimal reversible automata. This condition is on the structure of the transition
graph of the minimum automaton accepting the language under consideration.
As a special case, we show that whenever the “irreversible part” of the minimum
automaton contains a loop, it is possible to construct at least two different
minimal reversible automata.
1 From now on, we will consider only one-way automata. Hence we will omit to specify
“one-way” all the times.
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We also observe that there exist reversible automata that are reduced, but
not minimal. Investigating this phenomenon in detail, we were able to find a
language for which there exist arbitrarily large, and hence infinitely many, reduced
reversible automata. Furthermore, we obtained a general construction that allows
to obtain arbitrarily large reversible automata for each language accepted by a
minimum deterministic automaton satisfying the structural condition given in [3]
and such that the “irreversible part” contains a loop. We know that this is also
possible in other situations, namely that our condition is not necessary.

Now we introduce a few preliminary notations and notions. A deterministic
automaton (dfa) is a tuple A = (Q,Σ, δ, qI , F ) with the usual meaning. We allow
the transition function δ to be partial and througthout the paper, we assume that
all states are useful, namely they are used to accept some word. This implies that
a dfa does not contain any dead state. We denote by δR the reverse transition
function that associates with each state r ∈ Q and letter a ∈ Σ the set of states
from which r can be reached by reading a, i.e., δR(r, a) = {q ∈ Q | δ(q, a) = r}.
A state r is said to be irreversible when there are at least two transitions on the
same letter entering r, i.e., #δR(r, a) ≥ 2, otherwise r is reversible. A dfa is
said to be reversible (rev-dfa) when each state is reversible. A language is
reversible when there exists a rev-dfa accepting it.

A dfa A can be split in two parts: the reversible part and the irreversible
part. Roughly speaking, the irreversible part consists of all states that can be
reached with a path which starts in an irreversible state, and of all transitions
connecting those states. The reversible part consists of the remaining states
and transitions, namely the states that can be reached from the initial state by
visiting only reversible states, and their outgoing transitions.

The above mentioned algorithm [3] for converting a minimum irreversible
dfa A into an equivalent minimal rev-dfa A′, if possible, keeps the same
reversible part of A and creates some copies of states and transitions in the
irreversible part. However, different equivalent minimal rev-dfas might exist.
(See Figure 1).

2 Minimal Reversible Automata

In this section we present a characterization of the languages having several differ-
ent minimal reversible automata. From now on, let us fix a reversible language L
and the minimum dfa M = (Q,Σ, δ, qI , F ) accepting it.

Theorem 1. The following statements are equivalent:

1. There exists a state q ∈ Q in the irreversible part such that δR(q, a) 6= ∅,
δR(q, b) 6= ∅, for two symbols a, b ∈ Σ, with a 6= b.

2. There exist at least two minimal nonisomorphic rev-dfas accepting L.

As a consequence of Theorem 1 we have the following characterization of
reversible languages having a unique minimal (hence a minimum) rev-dfa:
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Fig. 1. A minimum dfa accepting the language L = (aa)∗ + a∗ba∗, with two minimal
nonisomorphic rev-dfas. In the dfa on the left the reversible part consists of the
states qI and p, while the irreversible one of the state q. The rev-dfa in the center
is obtained by the algorithm in [3].

Corollary 2. There exists a unique (up to isomorphism) minimal rev-dfa
accepting L if and only if for each state p ∈ Q in the irreversible part, all the
transitions entering in p are on the same symbol.

We proved that when the minimum dfa accepting a reversible language
contains a loop in the irreversible part the condition in Corollary 2 is always
false, hence there exist at least two minimal nonisomorphic rev-dfas. As a
consequence, considering Corollary 2, we can observe that when a reversible
language has a unique minimal rev-dfa, all the loops in the minimum dfa
accepting it should be in the reversible part. However, the converse does not hold,
namely there are languages whose minimum dfa does not contain any loop in
the irreversible part, which does not have a unique minimal rev-dfa. Indeed,
in [3] an example with a finite language is presented.

3 Reduced Reversible Automata

In this section, we consider reduced rev-dfas. There exist rev-dfas which
are reduced but not minimal. Furthermore, there exist reversible languages having
arbitrarly large reduced rev-dfas and, hence, infinitely many reduced rev-
dfas.

In Figure 2 a reduced rev-dfa equivalent to the dfas in Figure 1 is
depicted. If we try to merge two states in the loop, then the loop collapses to
a single state, so producing the minimum dfa, which is irreversible. Actually,
this example can be modified by using a loop of N states: if (and only if) N is
prime, we get a reduced automaton. This is a special case of the construction we
obtained to prove the following:

Theorem 3. If M contains a state q in the irreversible part such that the lan-
guage accepted by computations starting from q is infinite, then there exist in-
finitely many nonisomorphic reduced rev-dfas accepting L.
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q0 q1

q2

q3
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Fig. 2. A reduced rev-dfa equivalent to dfas in Figure 1.

The condition in Theorem 3 is not necessary. In fact, we found an example
where the minimum dfa does not contain any loop in the irreversible part, but
it is possible to construct infinitely many equivalent reduced rev-dfas.
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This is an extended abstract of a paper presented at MFCS 2015 [11].
Monadic second-order logic (MSO) is considered as a standard for compar-

ing expressiveness of logics of programs. Ground-breaking results concerning
expressiveness and decidability of MSO on infinite graphs were obtained first on
“freely-generated” structures (words, trees, tree-like structures, etc.) [28,30], then
on “non-free” structures like grids [18] or infinite graphs generated by regularity-
preserving transformations [10,8]. In all the above settings, the syntax of MSO
utilizes one or more binary relation symbols which are interpreted using the
binary edge relations of the graph structure. Additionally, much attention has
been brought to the study of enrichments of MSO with unary predicate symbols
or with the “equal level” binary predicate (MSOeql) [12,27].

For many of these settings, MSO has been compared with automata and with
modal logics. Standard results on trees are Rabin’s expressiveness equivalence
between MSO with two successors and automata on binary trees [23], and Janin
and Walukiewicz’s result [16] showing that the bisimulation-invariant fragment of
MSO interpreted over transition coincides with the µ-calculus. Notable exceptions
to the classical trilogy between MSO, modal logics and automata are MSO on
infinite partial orders – where only partial results are known [5,9,25] – and MSOeql–
where, similarly, only partial results are known [27].

More recently, there has been an increased interest in the expressiveness and
decidability of logics defined on structures in which two “orthogonal” relations
are considered: the so-called temporal epistemic (multi-agent) logics [13], which
combine time-passage relations and epistemic relations on the histories of the
system. Time-passage relations classically represent the evolution of the sys-
tem, while each epistemic relation captures some agent’s partial observation of
the system by relating indistinguishable histories. They allow to reason about
what these agents know about the state of the system along its executions. We
may incidentally identify now an important sub-domain in verification which

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 240–244
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720



Relating paths in transition systems: the fall of the modal mu-calculus 241

is concerned with the expressivity, decidability and axiomatizability of logics of
knowledge and time [15,6,29,13,14,17].

The natural question that arises regarding logics of agents that combine
time and knowledge is whether a similar trilogy can be established or not. In
particular, does there exist a natural extension of MSO, of the µ-calculus, and
of tree automata for the temporal epistemic framework, and how would they
compare? To the best of our knowledge, these questions remain open. Only
partial results exist on relations between some extensions of MSO, µ-calculus,
tree automata and other logics of knowledge and time [27,26,29,20].

The first observation is that appropriate extensions of MSO, of the µ-calculus
and of tree automata would rely on two sorts of binary relations: those related to
the behaviour of the system and those related to epistemic features. While the
temporal part of these logics naturally refer to a tree-like structure, the epistemic
part requires, in order to model e.g. powerful agents that remember the whole
past, to consider binary relations defined on histories. The models of such an
extension of MSO neither are tree-like structures, nor grid-like structures, nor
graphs within the Caucal hierarchy. The proposals in this direction that we know
about are [29,26,20] and [1]. [29] mentions an encoding of LTL with knowledge
into Chain Logic with equal-level predicate, which is a fragment of MSOeql. [26]
introduces the epistemic µ-calculus and studies its model-checking problem. [1]
studies an extension of the epistemic µ-calculus, and [20] proposes a generalization
of tree automata, called jumping tree automata, which is suited to the study of
temporal epistemic logics.

In this work, we develop a general setting in which models are transition
systems, i.e. directed graphs with atomic propositions, or predicates, on ver-
tices/states and labels on edges/transitions, together with a binary relation over
their finite executions, also called paths or histories. Such relations are called
path relations, and their definition is general enough to capture all indistinguisha-
bility relations considered in temporal epistemic logics, and more. We propose
extensions of MSO and of the µ-calculus, respectively called the monadic second
order logic with path relation and the jumping µ-calculus.

MSO with path relation is an extension of MSO interpreted over unfoldings of
transition systems equipped with a path relation, so that a first-order variable x
refers to a node in the tree-unfolding of a transition system, i.e. a finite execution
(or path, or history). The syntax is that of MSO on graphs with an additional
special binary relation symbol ;. A formula of the form x ; y holds in a
transition system if the path represented by x is related to the one represented
by y, according to the binary relation over paths that equips the system.

The jumping µ-calculus is a generalization of the epistemic µ-calculus defined
in [26]: it is also evaluated on tree-unfoldings of transition systems, and it features
a jumping modality ; whose semantics relies on the path relation that equips the
system. In case the path relation is seen as modelling histories’ indistinguishability
for some agent, this modality coincides with the classic knowledge operator K
for this agent.
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As in the classic setting of [16], definability in the jumping µ-calculus entails
definability in MSO with path relation. It is the converse statement that we
explore, that is the expressive completeness of jumping µ-calculus w.r.t. (the
bisimilar invariant fragment of) MSO with path relation.

We first show that, just like alternating tree automata are equivalent to the
µ-calculus, the jumping tree automata recently defined in [20] are equivalent to
the jumping µ-calculus, and the two-way translation does not depend on the a
priori fixed path relation. We then address, like in [16], the question whether
for bisimulation-closed classes of models, definability in MSO with path relation
implies definability in the jumping µ-calculus. A crucial parameter in this question
is the complexity of the path relation one considers. We recall that, given a finite
alphabetΣ, a binary relation overΣ∗ is regular if there is a finite state automaton
with two tapes on which it progresses synchronously (a synchronous transducer)
that accepts a pair of words over Σ if, and only if, it is in the relation (see [2]
for details). An example is the epistemic relation of an agent with synchronous
perfect recall [3,4]. A relation over Σ∗ is recognizable if there is a finite-state word
automaton over Σ ∪ {#}, where # is a special separator symbol, that accepts
precisely words of the form w#w′ where (w,w′) is in the relation (again refer to
[2] for details). For example, epistemic relations of agents whose memory can be
represented by finite state machines are recognizable relations (see [19]).

We establish the following results:

Theorem 1. For any recognizable path relation, the jumping µ-calculus is ex-
pressive complete with respect to MSO with path relation.

Theorem 2. There are regular binary relations for which the jumping µ-calculus
is not expressive complete with respect to MSO with path relation.

Theorem 1 follows simply from the fact that, since recognizable relations are
MSO definable, both our extensions of MSO and the µ-calculus collapse to the
classic MSO and µ-calculus, respectively, when the path relation is recognizable.

Concerning transition systems with bounded branching degree, we obtain in
addition that the jumping µ-calculus with recognizable path relation is at most
exponentially more succinct than the µ-calculus, while its satisfiability problem
is also Exptime-complete. These results rely on the effective translation of
jumping tree automata equipped with recognizable path relations into alternating
two-way tree automata [20].

To establish Theorem 2 we consider the case of the so-called synchronous
perfect recall relation over paths [24,22], which is regular. We prove that the class
of reachability games with imperfect information and perfect recall (with a fixed
number of observations and actions) where the first player wins cannot be defined
in the jumping µ-calculus, while being closed by bisimulation and definable in
our extension of MSO. The proof heavily relies on the equivalence between the
jumping µ-calculus and jumping automata, on which we exploit the “pigeon-hole
principle”, as well as on the use of unobservable winning conditions. Indeed, we
prove that if winning conditions are assumed to be observable, then the class of
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imperfect-information (either reachability or parity) games where the first player
wins is definable in the jumping µ-calculus.

Our expressivity incompleteness result has several impacts.
First, we obtain that the class of jumping tree automata is not closed un-

der projection. Indeed, the (bisimulation-closed) second-order-quantification-free
fragment of MSO with path relation can be embedded into jumping tree au-
tomata. Their closure under projection would therefore imply that they coincide
with the full (bisimilar invariant) MSO with path relation, which contradicts our
expressivity incompleteness result.

Regarding logics of programs, there has been some interest in comparing
alternating-time temporal logics with fix-point logics. When agents have per-
fect information, the µ-calculus subsumes these logics (see for instance [21]).
For imperfect information, our results show that the picture changes: because
alternating-time temporal logics with imperfect information can express the
existence of winning strategies in reachability games with imperfect informa-
tion, Theorem 2 reveals that the powerful jumping µ-calculus does not subsume
alternating-time temporal logics with imperfect information when we consider
players with perfect recall.

We also believe that our incompleteness result impacts the axiomatizability of
alternating-time temporal logics with imperfect information: the impossibility to
express the existence of a winning strategy in reachability games with imperfect
information and perfect recall in the jumping µ-calculus strongly suggests the
absence of fix-point axioms for certain alternating temporal logics.
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Abstract. Compacting Petri nets behaviors means to develop a more
succinct representation of all the possible executions of a net, still giving
the capability to reason on properties fulfilled by the computations of
the net. To do so suitable equivalences on alternative executions have to
be engineered. We introduce a general notion of merging relation, cover-
ing the existing approaches to compact behaviors of nets, and we state
some properties this kind of relations may satisfy. The classical merging
relations, defined on unfoldings, do not in general satisfy the properties
one may be interested in, and we propose how to add information to the
executions in order to enforce some of these properties.

The behavior of a Petri net can be described in many ways, e.g using the
marking graph, or the set of firing sequences, or its unfolding (see [1,2] among
many others). The notion of unfolding of a net N , a net where places (called
conditions) and transitions (called events) are labeled with the places and tran-
sitions of N ([3,4]), is particularly relevant as it allows to record conflicts and
dependencies among the activities modeled with the Petri net N . Furthermore,
the possibility of finding a finite representation of it (the prefix), has given prof-
itability to the notion, otherwise confined to the purely theoretical modeling
realm ([5,6]). However the size of a finite unfolding, even of the prefix, can be
too large, hence manageable only with big efforts. Prefixes are obtained cutting
the unfolding in such a way that each execution represented in the unfolding
can be recovered in the prefix itself. The cutting procedure allows to eliminate
unnecessary duplications. Still some information may be redundant, for instance
the existence of conflicting components leading to isomorphic futures, but with
alternative pasts, forces to represent all the possible futures, introducing in this
way some avoidable duplications.

The identification of conflicting conditions seems to be a good basis for
compacting nets’ behaviors. Following this idea some approaches have been
? Work partially supported by Aut. Region of Sardinia under grant P.I.A. 2013 “NOMAD” and by
MIUR PRIN 2010-11 “Security Horizons”
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proposed, and these are based on giving precise criteria to identify conflicting
conditions in nets which are acyclic, i.e. the transitive and reflexive closure
of the flow relation is a partial order. In the case of merged process ([7]) the
criterion is that the conditions must be equally labeled and have the same token
occurrence (i.e. they represent the same token, in the collective token philosophy
of [8]) whereas in the case of trellis processes ([9]) the criterion is the distance of
the equally labeled conditions from the initial conditions (measuring the time).
Once conditions have been identified, isomorphic futures can be identified as
well. The identification of conflicting conditions has a semantics counterpart:
the identification induces an equivalence relation on the different computations
leading to these conditions, equivalence driven by the common futures of these
computations.

We pursue this idea further, casting it in a general framework. We start
choosing a representation of nets behaviors less constrained with respect to the
usual notion of causal net on which unfoldings are based. Causal nets are acyclic
safe nets where conditions may have at most one incoming arc. The uniqueness
of incoming arcs, together with the safeness, guarantee that dependencies can
be uniquely identified. Conflicts are deduced from conditions having more than
one outgoing arcs (implying that various alternatives use that condition). We
drop the assumption that each condition has at most one incoming arc, and we
add the requirements that each transition in the net can be executed at most
once (which is syntactically enforceable) and that restricting the net to all the
transitions in a execution we obtain an acyclic net, where each condition has
at most one incoming and one outgoing arc. Dependencies can be captured by
looking at executions, and some conflicts may still be retrieved by looking at
multiple outgoing arcs. We call these nets unravel nets. This notion covers the
one of causal nets, as these are indeed unravel nets, whereas unravel nets may not
be causal ones. Together with the notion of unravel net, we introduce a notion
of conflict that it is not based on the syntax, like in causal nets, but on the
semantics (the executions of the net), simply stipulating that two conditions are
in conflict if they never appear together in an execution.

We can now put forward the general framework, that consists in taking a
representation of the behaviors of a given net (in our case a labeled unravel net)
and an equivalence relation defined on conditions of the chosen representation of
the behaviors. The minimal requirement we put on this relation, which is called
merging relation is that two different conditions in the relation should be equally
labeled and in conflict.
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Consider the unravel net N1. Conditions c2 and c3 are in conflict and they
have the same label p, and similarly for conditions c1 and c4 (here the label is q).
In the net above the merging relation (denoted with ∼) stipulates that c2 ∼ c3,
c1 ∼ c4, c6 ∼ c7 and c5 ∼ c8 (reflexive pairs omitted). The relation is identified
pictorially with different colors. This is not the unique merging relation definable
on this net, we could have chosen this other relation: c2 ∼ c7, c1 ∼ c4, c6 ∼ c3
and c5 ∼ c8 (again reflexive pairs omitted), and clearly the identity relation
is a merging relation. Once that a merging relation is fixed, we can compact
the behavior by merging the conditions in the same equivalence classes and
identifying the equally labeled transitions having the same preset and postset.
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The result of this procedure is the
net shown on the left. The condi-
tion 0 is the equivalence class of c0,
1 is the equivalence class of c2 and
c3, 2 the one of c1 and c4, 3 of c6
and c7 and finally 4 the one of c5
and c8. Transitions with the same
labels are not identified as none of
them has the same preset and postset.
We observe that the net obtained iden-
tifying equivalent conditions is not any
longer an unravel net. In the execution
e1 followed by e3 and e4 the condition
1 is marked twice violating the require-
ment of being acyclic. The fact that e3

should be followed by e5 and not e4 has been lost in the compaction process.
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The notion of merging relation covers
the criteria used in merged and trellises
processes. In the case of merged and trel-
lises processes the starting point is always
a branching process, hence a labeled causal
net where dependencies and conflicts can
be found syntactically. The criterion to use
in case of merged processes is to consider
two equally labeled conflicting conditions ci

and cj as equivalent is that they have the
same token occurrence, which is defined as
the number of conditions labeled as ci and
cj that are encountered going back to the initial conditions, comprising ci and cj .
In the net N1 the conditions c6 and the condition c7 have both one condition in
their past which has the same label, namely c2 and c3 respectively, hence their
token occurrence is 2. In the case of trellises processes the starting point is not
only a branching processes, but here the nets considered are called multi-clocks
nets. Multi-clocks nets are the product of various automata where only one place
is initially marked and each reachable marking is such that each component has
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just one place marked. Due to this feature it is possible to identify, for each
condition and each execution, the exact time in which the condition holds. The
criterion is then the one of considering two equally labeled conflicting conditions
ci and cj as equivalent is that they have the same time, which is defined as the
number of conditions that are encountered going back to the initial conditions,
comprising ci and cj . In the unravel net N3, the conditions c3 and c4 have the
same label p and have the same distance from the initial conditions, and similarly
c5 and c6. By identifying these conditions also the transitions e5 and e6 have
to be identified, resulting in the net N4. 1 is the equivalence class containing c3
and c4, 2 the one with c5 and c6 and finally ê is the transition obtained fusing
e3 and e4, has these two transitions have the same preset, the same postset and
are equally labelled, thus they share the same future.
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The criteria used to obtain merged
and trellises processes may be general-
ized equipping the unravel net with a
mapping that associate to each condi-
tion a unique number, which we can call
the measure. Thus a merging relation is
obtained making equivalent all the con-
ditions having the same labels, the same
measure and being pairwise conflicting.

For the compaction process to be of
real interest one would like to obtain a
net which is possibly an unravel one, or
that has strong relations with the unravel net we started with. In fact we devise
two characteristic the compaction process may have. The first one is that to each
execution in the compact net, at least an execution in the original one should
correspond. The merging relation used to obtain N2 out of N1 does not fulfil
this property, whereas it does the merging relation used to obtain N4 out of N3.
When a merging relation fulfil this property we say that it is a reflecting merging
relation. Clearly a reflecting merging relation always exists, as the identity relation
is reflecting.

The property of being reflecting, adopting as the measure the token occurrence,
can be enforced by enriching the starting unravel net. In the net N1 conditions
are used both to represent dependencies and conflicts, and by fusing some of
them the dependencies may be lost. Thus the idea is to add some conditions that
captures the dependencies. These conditions are easily obtainable by considering
the whole token count for each transition of net. The net N1 can be enriched as
shown in the net N5, and the added conditions are labeled with the condition
representing the dependency.
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Among the added conditions, in this case, there is no equivalence, as all of
them have a different measure, the measure in this case being the one represented
by the whole token count for the transitions (details on how to determine this
measure can be found in [10], where the theory is applied to multi-clock nets).
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The result of the compaction process is
the net N6. Now the execution e1 fol-
lowed by e3 and e4 is no longer possible
and e3 is followed by e5 only.

Beside looking for reflecting merg-
ing relation, one could be interested in
preserving some characteristic of the
net. For instance, one may be inter-
ested in preserving the fact that the re-
sulting net is still an unravel one (and
the measure induced by the time in
the compaction done with trellis pro-
cesses has this characteristic) or being
acyclic when restricted to a certain sub-
set of conditions (again, when consider-
ing the conditions belonging to an au-
tomata this is the case in trellis pro-
cesses). When properties fulfilled by the
net we start with are preserved by the compaction process we say that the merg-
ing relation is preserving. The merging relation giving the net N6 preserves the
property that, when only the added conditions are considered, the whole net is
acyclic, and verification can be performed easily.
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Abstract. We study the problem of checking whether a two-player reach-
ability game admits more than a winning strategy. We investigate this in
case of perfect and imperfect information, and, by means of an automata
approach we provide a linear-time procedure and an exponential-time
procedure, respectively. In both cases, the results are tight.

1 Introduction

Game theory is a powerful mathematical framework largely exploited in computer
science and AI [1,9,16]. In the basic setting, we refer to two-player turn-based
games where the players, conventionally named Player0 and Player1, play for
a finite number of rounds. The states of the arena are partitioned among the
players and each player can move only from the states he owns. Solving such a
game amounts to check whether Player0 has a winning strategy, i.e., a sequence
of moves that allows him to achieve his goal, no matter how his opponent plays.

In several game settings having a more precise (quantitative) information
about how many winning strategies a player has at his disposal turns out to be
crucial. For example, in Nash Equilibrium, such an information amounts to solve
the challenging question of checking whether the equilibrium is unique [2].

In this paper, we address the quantitative question of checking whether
Player0 has more than a strategy to win a finite two-player turn-based game,
under the reachability condition. We consider both the cases that the players have
perfect or imperfect information about the moves performed by the opponent.
For the solution we use an automata-theoretic approach. Precisely, we build an
automaton that accepts all tree witnesses for more than one winning strategy for
Player0. Hence, we reduce the addressed quantitative question to the emptiness
of this automaton. In the perfect information setting, this results in a linear-time
upper bound complexity. In the imperfect information setting, instead, it results
in an exponential-time solution. In both cases, the results are tight.
? This work is a communication based on the works [12] and [11].
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Related works. Counting strategies has been deeply exploited in reactive sys-
tems formal verification by means of specification logics extended with graded
modalities, interpreted over games of infinite duration [2,6,10]. These works suit-
ably extend preliminary reasonings in closed system verification [3,4,7].

2 The Game Model

In this section, we present our model and its semantics.

Definition 1. A turn-based two-player reachability game with imperfect infor-
mation (2TRGI), Player0 vs Player1, is a tuple G = < St, sI , Ac, tr, W, ∼=>,
where St = St0 ∪ St1 is a finite non-empty set of states, with Sti set of states of
Playeri, sI ∈ St is an initial state, Ac = Ac0 ∪Ac1 is the set of actions, W is a
set of target states, tr : Sti ×Aci → St1−i, for i ∈ {0, 1} is a transition function
mapping a state of a player and its action to a state belonging to the other player,
and ∼= =∼=0 ∪ ∼=1 is a set of equivalence relations on Ac.

Let i ∈ {0, 1} and a, a′ ∈ Aci be two actions. If a ∼=1−i a
′ we say that a and

a′ are indistinguishable to Player1−i. By [Aci] ⊆ Aci we denote the subset of
actions that are distinguishable/visible for Player1−i. In particular, for each set
of equivalent actions over Aci, we put a representative action in [Aci]. From
any s ∈ Sti, if a ∼=1−i a

′ then also the reached states are indistinguishable, ie
tr(s, a) = s′ and tr(s, a′) = s′′ are indistinguishable for Player1−i. A relation ∼=i

is an identity if a ∼=i a
′ iff a = a′. A 2TRGI has perfect information (a 2TRG,

for short) if ∼= contains only identities. To give the semantics of 2TRGIs, we
introduce the concepts of track, strategy and play.

A track is a finite sequence of states ρ ∈ St∗ such that, for all i < |ρ|, if
(ρ)i ∈ St0 then there exists an action a0 ∈ Ac0 such that (ρ)i+1 = tr((ρ)i, a0),
else there exists an action a1 ∈ Ac1 such that (ρ)i+1 = tr((ρ)i, a1), where (ρ)i

denotes the i-st element of ρ. By last(ρ) we denote the last element of ρ and
by ρ≤i the prefix track (ρ)0 . . . (ρ)i. By Trk ⊆ St∗ we denote the set of tracks
over St and by Trki the set of tracks ρ in which last(ρ) ∈ Sti. For simplicity, we
assume that all tracks in Trk start at the initial state sI ∈ St.

A strategy for Playeri is a function σi : Trki → Aci that maps a track to an
action. A strategy is uniform if it adheres on the visibility (visible actions) of
the players. In the rest of the paper we only refer to uniform strategies.

The composition of strategies, one for each player, induces a computation
called play. Precisely, assume Player0 and Player1 take strategies σ0 and σ1,
respectively. Their composition induces a play ρ such that (ρ)0 = sI and for each
i ≥ 0 if (ρ)i ∈ St0 then (ρ)i+1 = tr((ρ)i, σ0(ρ≤i)), else (ρ)i+1 = tr((ρ)i, σ1(ρ≤i)).

We can now give the definition of reachability winning condition.

Definition 2. Player0 wins a 2TRGI, under the reachability condition, if he has
a strategy that for all strategies of Player1 the resulting induced play will enter
a state in W. Such a strategy is said winning for Player0.



Additional Winning Strategies in Two-Player Games 253

Given a 2TRGI and one of its play ρ, it is possible to check who is the
winner in ρ by considering only (ρ)0, . . . , (ρ)|St|+1. In fact, if (ρ)i ∈W for some
i ∈ {0, . . . , |St|+ 1} then Player0 wins the play ρ, otherwise there exists a loop
in which Player1 can stay infinitely, and then he wins the game.

We formalize the winning condition by means of a tree structure that we call
schema strategy tree. To proper introduce it, we provide the concept of decision
tree. We start with some basic notion about trees.

Let Υ be a set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements of
T are called nodes and the empty word ε is the root of T . Given a node v = y ·x,
with y ∈ Υ ∗ and x ∈ Υ , we define prf(v) to be y and last(v) to be x. For an
alphabet Σ, a Σ-labeled Υ -tree is a pair < T, V > where T is an Υ−tree and
V : T → Σ maps each node of T to a symbol in Σ.

A decision tree is the unwinding of the game structure along with all possible
combinations of player actions, ie a tree that collects all tracks over the game. A
winning strategy can be seen as an opportune mapping, over the decision tree, of
a player’s "strategy schema" built over the visibility. In other words, the player
first makes a decision over a set S of indistinguishable states and then this choice
is used in the decision tree for each state in S. This makes the decision tree
uniform. However, observe that we use synchronous memoryfull strategies. This
means that in a decision tree, the set S of indistinguishable states resides at the
same level. To make this idea more precise, we now formalize the concept of
schema strategy tree and uniform strategy tree.

Definition 3. Given a 2TRGI and a uniform strategy σ for Playeri, a schema
strategy tree for Playeri is a {>,⊥}-labeled (Aci ∪ [Ac1−i])-tree < T, V >, with
T ⊂ (Aci ∪ [Ac1−i])∗ and V as follows: (i) V (ε) = >; (ii) for all v ∈ T , if
last(v) ∈ [Ac1−i] then V (v) = >, else let ρ = (ρ)0 . . . (ρ)|v|−1 be a track from sI ,
with (ρ)k = tr((ρ)k−1, last(v≤k)) for each 0 ≤ k ≤ |v| − 1, if last(v) = σ(ρ) then
V (v) = >, else V (v) = ⊥.

In a schema strategy tree the > label indicates that Playeri selects the
corresponding set of visible states in the decision tree and ⊥ is used conversely.
In particular, the starting node of the game is the root of the schema strategy tree
and it is always enabled (condition (i)); all nodes belonging to the adversarial
player are always enabled; and one of the successors of Playeri nodes is enabled
in accordance with the uniform strategy σ (condition (ii)). Simply, a uniform
strategy tree is a projection of the decision tree along the schema strategy tree.

3 Additional Winning Strategies for 2TRGI

In this section we provide the main result of this work. Technically, we make use
of alternating tree automata [14].

An alternating tree automaton (ATA) is a tuple A =< Σ,D,Q, q0, δ, F >,
where Σ is the alphabet, D a finite set of directions, Q the set of states, q0 ∈ Q
the initial state, δ : Q×Σ → B+(D×Q) the transition function, where B+(D×Q)
is the set of all positive Boolean combinations of pairs (d, q) with d direction and
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q state, and F ⊆ Q the set of the accepting states. An ATA recognizes (finite)
trees by means of runs. For a Σ-labeled tree < T, V >, with T = D∗, a run is a
(D∗×Q)-labeled N-tree < Tr, r > such that the root is labeled with (ε, q0) and
the labels of each node and its successors satisfy the transition relation. A run
is accepting if all its leaves are labeled with accepting states. An input tree is
accepted if there exists a corresponding accepting run. By L(A) we denote the
set of trees accepted by A. We say that A is not empty if L(A) 6= ∅.

For our purpose, we formalize the concept of schema additional strategy tree.

Definition 4. Given a 2TRGI and two uniform strategies σ and σ′ for Playeri,
a schema additional strategy tree for Playeri is a {>,⊥}-labeled (Aci∪ [Ac1−i])-
tree < T, V >, with T ⊂ (Aci ∪ [Ac1−i])∗ and V as follows: (i) V (ε) = >; (ii)
for all v ∈ T , if last(v) ∈ [Ac1−i] then V (v) = >, else let ρ = (ρ)0 . . . (ρ)|v|−1
be a track from sI , with (ρ)k = tr((ρ)k−1, last(v≤k)) for each 0 ≤ k ≤ |v| − 1, if
last(v) = σ(ρ) or last(v) = σ′(ρ) then V (v) = >, else V (v) = ⊥.

Now, we have all ingredients to give the following result.

Theorem 1. Given a 2TRGI the problem of deciding whether Player0 has more
than a uniform winning strategy is ExpTime-Complete.

Proof. For the lower bound, we recall that 2-player turn-based games with imper-
fect information is ExpTimeH [13]. For the upper bound, we use an automata ap-
proach. Precisely, we build an ATA A that accepts all schema additional strategy
trees for Player0. It has as set of states Q = St×St×{>,⊥}×{0, 1}×{ok, split}
and alphabet Σ = {>,⊥}. We use in Q a duplication of states as we want to
remember the state associated to the parent node while traversing the tree. The
flag split is used to remember we have to “enter” two winning strategy paths, so
moving to ok. The flag f ∈ {1, 0} indicates whether along a path we have entered
or not a target state. As initial state we set q0 = (sI , sI ,>, 0, split). Given a
state q = (s, s′, t, f, f̄), the transition relation δ(q, t′) is defined as:

∧
a0∈Ac0

(d, (s′, s′′,>, f ′, ok)) if s′∈St0 ∧ t′=> ∧ t=> ∧ f̄=ok∧
a0∈Ac0

∨
f̄ ′∈{ok,split}(d,(s′, s′′,>, f ′, f̄ ′)) if s′∈St0 ∧ t′=> ∧ t=> ∧ f̄=split∧

a1∈Ac1
(d, (s′, s′′,>, f ′, f̄)) if s′∈St1 ∧ t′=> ∧ t=>

false if t′=> and t=⊥
true if t′=⊥

if s′ ∈ St0 then s′′ = tr(s′, a0) and d is in accordance with |Ac1|, else s′′ =
tr(s′, a1) and d is in accordance with |Ac0|; if q′ ∈ W then f ′ = 1, otherwise
f ′ = f .

The set of accepting states is F = {(s, s′, t, f, f̄) : s, s′ ∈ St ∧ t = > ∧ f =
1∧f̄ = ok}. Recall that an input tree is accepted if there exists a run whose leaves
are all labeled with accepting states. In our setting this means that an input tree
simulates a schema additional strategy tree for Player0. So, if the automaton is
not empty then Player0 wins the game with more than one strategy, ie, there
exists a schema additional strategy tree for him.
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The desired computational complexity follows by considering that: (i) the
size of the automaton is polynomial in the size of the game, (ii) to check its
emptiness can be performed in exponential time [5,8].

In case we study a 2TRG the automaton provided in the above proof sends
one copy in each direction. So, the automaton is nondeterministic. By recalling
that the emptiness problem in this case is solvable in linear-time [15] and the
PTime-hardness for alternating reachability games [9] the following result holds.

Theorem 2. Given a 2TRG the problem of deciding whether Player0 has more
than a winning strategy is PTime-Complete.

4 Conclusion and Future Work

In this paper we have shown an automata-theoretic approach to check whether
a player has more than a winning strategy in a two-player reachability game.
Our approach works with optimal asymptotic complexity both in the case the
players have perfect information about the moves performed by their adversarial
or not. We believe that our results can be used as core engine to count strategies
in more involved game scenarios and in many solution concepts reasoning. For
example, it can be used to solve the Unique Nash Equilibrium problem, in an
extensive game form of finite duration. As future work, it would be useful to
check additional winning strategies in multi-agent concurrent games.
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1 Introduction

Actors are a powerful computational model for defining distributed and concurrent
systems [1,2]. This model has recently gained prominence, largely thanks to
the success of the programming languages Erlang [3] and Scala [9]. The actor
model relies on a few key principles: (a) an actor encapsulates a number of
data, by granting access only to the methods inside the actor itself; (b) method
invocations are asynchronous, actors retain a queue for storing the invocations to
their methods, which are processed sequentially by executing the corresponding
instances of method bodies. The success of this model originates at the same time
from its simplicity, from its properties, and from its abstraction level. Indeed,
programming a concurrent system as a set of independent entities that only
communicate through asynchronous messages eases the reasoning on the system.
1.1 Problem: Actors and synchronizations.
Actors do not explicitly support synchronization: requests between actors are in
general remote procedure calls. The only guarantee of asynchronous messages is
the causal ordering created by the communication. The retrieval of the result of
an asynchronous message is usually simulated by a callback mechanism where
the invoker sends its identity and the invoked actor sends a result message to
the invoker. However callbacks introduce an inversion of control that makes the
reasoning on the program difficult. Henceforth, providing synchronization as
first-class linguistic primitive is generally preferable.

Some languages extend the actor model and provide synchronizations by
allowing methods to return values. In general, this is realised by using explicit
futures. A method of an actor returns a special kind of objects called future; in
turn the type system is extended so that some values are tagged with a future
type. A special operation on a future allows the programmer to check whether
the method has finished and at the same time retrieves the method result. The
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drawback of this approach is that programmers must be aware of futures and
must know how to deal with them.

We study a different extension of the actor model that uses implicit futures
and a wait-by-necessity strategy: the caller synchronizes with a method invoca-
tion only when its returned value is strictly necessary [4]. This strategy does
not require explicit synchronization operators and ad-hoc types: the scheduler
stops the flow of execution when a value to be returned by a method is needed
for computing an expression. The synchronization becomes data-flow oriented:
if some data is accessed and this data is not yet available, the program is au-
tomatically blocked. This way, an actor can return a result containing a future
without worrying about which actor will be responsible for synchronizing with
the result: the synchronization will always occur as late as possible. Replacing a
future by its value is no more an operation that has to be explicitly written by
the programmer, as it automatically happens at some point of the computation
that can be optimized by the designer of the language runtime. We defined a
simple actor calculus with wait-by-necessity synchronizations, called gASP [6].

While synchronization is useful, if it used improperly it can cause deadlocks
(deadlocks cannot occur in the basic actor model). Deadlock detection is a sensible
issue, in particular because it is hard to verify in languages that admit systems
with unbounded (mutual) recursion and dynamic actor creation.

The following example illustrates the expressiveness of (implicit) futures and
the difficulties of deadlock analysis:
01 Int fact(Int n, Int r){
02 Act x; Int y;
03 if (n == 0) return r;
04 else { x = new Act(); r = r*n; n = n-1;
05 y = x.fact(n,r); return y; }}

The access to fact(n,1) boils down to exactly n synchronizations. Indeed, since
the value of y is never accessed within the method, the future is returned to the
caller. When accessing the value of fact(n,1) a synchronization is performed on
the result of the first nested invocation fact(n-1,n) which will need to access
the result of the next invocation fact(n-1,n*n-1), and so on. Technically, let
the type of an asynchronous invocation be called future type. Then the type of
fact(n,r) is a recursive future type. Because of this type, it is not possible to
determine at compile time how many explicit synchronizations happen when the
value of fact(x,1) is needed, with x unknown.
1.2 A technique for deadlock analysis.
To address (static-time) deadlock detection of gASP programs, we rely on a
technique that has been already used for pi-calculus [7] and for a concurrent object-
oriented calculus called (core) ABS [5,8]. Our technique consists of two modules:
a front-end type (inference) system that automatically extracts abstract
behavioral descriptions relevant to deadlock analysis from gASP programs, called
behavioral types, and a back-end analyzer of types that computes a model of
dependencies between runtime entities using a fixpoint technique.

According to this technique, a synchronization between actors α and α′ is
modeled by a dependency pair (α, α′), which means that the termination of



Deadlock analysis with behavioral types for actors. 259

a process of α depends on the termination of a process of α′. Programs are
denoted by finite models that are sets of relations on names. If a circular depen-
dency (α1, α2) · · · (αn−1, αn)(αn, α1) is found in one of the relations, then the
corresponding program may manifest a deadlock.

Synchronization on explicit futures boils down to checking the end of a method
execution and retrieving the returned object, the retrieved object can be a future
itself. On the contrary, with wait-by-necessity, if a computation requires a not-yet
available value then a synchronization occurs, until a proper value is available.
Retrieving this value might require to wait for the termination of several methods.
Indeed, consider the factorial example, let β be the actor needing the value of
fact(n,1). This synchronization requires that β simultaneously synchronizes
with all the actors computing the nested factorial invocations, say β1, . . . , βn−1.
A translation from gASP to ABS would require to know statically the number n
of synchronisation to perform. From the analysis point of view, this means that
we have to collect all the dependencies of the form (β, β1), (β, β2), . . . , (β, βn−1).
In [5,8], this collection was done step-by-step by generating a dependency pair
for every explicit synchronization. For synchronization on implicit futures, we
need to generate a sequence of dependence pair when a value is needed, and this
sequence is not bound statically.
1.3 Main contribution.
Addressing adequately implicit futures amounts to define a new type system of
the above program and adapt in a non-trivial way the analyzer. The challenge we
address is the ability to extend the synchronization point so that an unbounded
number of events can be awaited at the same time. Our solution first extends
the behavioural type with fresh future identifiers and to introduce specific types
that identify whether a future is synchronised or not. A method signature also
declares the set of actors and futures it creates to handle the potential unbounded
number of future and actor creations. Then, we exploit the relation that exists
between the number of dependencies of a synchronization and the number of
nested method invocations. Instead of associating dependencies to synchroniza-
tion points, we delegate the production of the dependencies to method invocations,
each contributing with its own dependency. The sequence of dependencies is
unfolded during the analysis. To implement this methods types of gASP carry an
additional formal parameter, called handle, which is instantiated by the actor
requiring the synchronization when this happens. The evaluation of behavioural
types in the analyzer also carries an environment binding future names to their
values (method invocations).

2 Behavioral Types

The deadlock detection technique we present uses abstract descriptions, called
behavioral types, that are associated to programs by a type system. The purpose of
the type system is to collect dependencies between actors and between futures and
actors. At each point of the program, the behavioral type gathers informations on
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local synchronizations and on actors potentially running in parallel. We perform
such an analysis for each method body, gathering the behavioral information at
each point of the program.

A behavioral type program is a pair
(
L, Θ � L

)
, where L is a finite set of method

behaviors m(α, x̄, X) = (ν ϕ)(Θm � Lm), with α, x̄, X being the formal parameters of
m, Θm the future environment of m, Lm the behavioral types for the body of m, and
Θ and L are the main future environment and the main behavioral type, respec-
tively. A future environment Θ maps future names to future behaviors (without
synchronization information) λX.m(α,x, X). In the method behavior, the formal
parameter α corresponds to the identity of the object on which the method is
called (the this), while X, called handle, is a place-holder for the actor that will
synchronize with the method. In practice several actors can synchronise with the
same future, but only one at a time. x̄ are the type of the method parameters.
The binder (νϕ) binds the occurrences of ϕ in Θm and Lm, with ϕ ranging over
future or actor names.

The basic types r are used for values: they may be either @, to model inte-
gers, or any actor name α. The extended type x is the type of variables, and
it may be a value type r or a not-yet-synchronized type rf (in order to retrieve
the value r it is necessary to synchronize the future f). The behavioral type 0
enforces no dependency, (κ, α) enforces the dependency between κ and α meaning
that, if κ is instantiated by an actor β, β will need α to be available in order
to proceed its execution. fκ may represent different behaviors depending on the
value of κ: f? represents an unsynchronized future f , which is a pointer in the
future environment to the corresponding method invocation; fα represents the
synchronization of the actor α with the future f ; fX represents the return of
a future f by the method associated to the handler X. The type L N L′ is the
parallel composition of L and L′, it is the behavior of two methods running in
parallel and not necessarily synchronized. The sum L + L′ it is the composition
of two behaviors that cannot occur at the same time, either because one occurs
before the other or because they are exclusive.

In general, a statement has a behavior which is a sum of behaviors. Each
term of the sum is a parallel composition of synchronization dependencies and
unsynchronized behaviors. We propagate this way the set of methods running in
parallel as a set of not-yet-synchronized futures all along the type analysis. The
statements that create no synchronization at all (i.e. that do not access a future,
nor call a method, nor return from a method) have behavior 0.
Example. The behavioral type associated to the following program is (fact_d(α, @f , X)
= (ν f ′)(Θfd � Lfd), Θ � L).
01 Int fact_d(Int n){
02 Int y;
03 if (n == 0) return 1;
04 else { n = n-1; y = this.fact_d(n);
05 y = y*(n+1) ; return y; }}

Θfd = {f ′ 7→ λX. fact_d(α,@, X)}
Lfd = (fα + f ′

? + f ′
α) N (X,α)

Θ = {f ′′ 7→ λX.fact_d(α,@, X)}
L = f ′′

? + f ′′
main

The synchronization f ′α, contained in the behavior Lfd, causes a deadlock. The
corresponding method invocation (λX. fact_d(α, @, X)) is performed on the
actor α, which amounts to instantiate the pair (X,α) into (α, α).
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3 Future work.

Relaxing constraints. In order to simplify our arguments, we focussed on a
sublanguage where futures are either returned or synchronized within a method
body. This implies that a synchronization on a method will cause the simulta-
neous synchronization on every new future it may have directly or indirectly
triggered. More specifically, after the synchronization we are guaranteed that
every other method invocation triggered by it has terminated. We intend to relax
this restriction by admitting method behaviours that trigger unsynchronized
tasks. We already investigated this extension in [8] and the application to gASP
of the solutions therein seems possible. A similar remark concerns the restriction
that fields of actors must be ground integers. We can relax it by using records,
as we did in [8]. In this case, the problematic issue will be to admit fields that
store futures while keeping the precision of the analysis acceptable.
Actor model extension. A possible evolution of our work could be continue
the study of deadlock analysis on some actor model extension. Generally an
actor runs a single applicative thread, but in [10] a version of the model in which
each actor is able to run more than one thread in parallel is presented. This
extension both enhances efficiency on multicore machines, and prevents most of
the deadlocks of the actors. It is trivial to see that if there are no constraints
related to the number of methods that can run in parallel on the same actor,
the model results to be deadlock free. However, it could be interesting to study
this extension of the actor model enriched by a concept that can be defined as
compatibility between methods. This compatibility can be a property defined by
the programmer that through some kind of annotation can specify if it is safe
to run in parallel some methods. In this context safe can mean that there are
no data races condition if the compatible methods are executed in parallel on
the same actor. We think that our technique can be applied on this scenario
extending the type system in order to express the compatibility concept.
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Abstract. Given an n-vertex and m-edge non-negatively real-weighted
graph G = (V, E, w), whose vertices are partitioned into a set of k clusters,
a clustered network design problem on G consists of finding a (possibly
optimal) solution to a given network design problem on G, subject to
some additional constraint on its clusters. In this paper, we focus on the
classic shortest-path tree problem and summarize our ongoing work in
this field. In particular, we analyze the hardness of a clustered version
of the problem in which the additional feasibility constraint consists of
forcing each cluster to form a (connected) subtree.

1 Introduction

In several network applications, the underlying set of nodes may be partitioned
into clusters, with the intent of modeling some aggregation phenomena taking
place among similar entities in the network. In particular, this is especially true
in communication and social networks, where clusters may refer to local-area
subnetworks and to communities of individuals, respectively. While on one hand
the provision of clusters allows to represent the complexity of reality, on the
other hand it may ask for introducing some additional constraints on a feasible
solution to a given network design problem, with the goal of preserving a specific
cluster-based property. Thus, on a theoretical side, given a vertex-partitioned
input (possibly weighted) graph G, a clustered (a.k.a. generalized) network design
problem on G consists of finding a (possibly optimal) solution to a given network
design problem on G, subject to some additional constraint on its clusters.
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One of the most intuitive constraint one could imagine is that of maintaining
some sort of proximity relationship among nodes in a same cluster. This scenario
has immediate practical motivations: for instance, in a communication network,
this can be convincingly justified with the requirement of designing a network
on a classic two-layer (i.e., local versus global layer) topology. In particular, if
the foreseen solution should consist of a (spanning) tree T in G, then a natural
setting is that of forcing each cluster to induce a (connected) subtree of T . For
the sake of simplicity, in the following this will be referred to as a clustered
tree design problem (CTDP), even if this is a slight abuse in the nomenclature.
As a consequence, classic tree-based problems on graphs can be revisited under
this new perspective, and while some of them do not actually exhibit, from a
computational point of view, a significant misbehavior w.r.t. the ordinary (i.e.,
non-clustered) counterpart (for instance, the minimum spanning tree (MST)
problem falls in this category, since we can easily solve its clustered version by
first computing a MST of each cluster, then contracting these MSTs each to a
vertex, and finally finding a MST of the resulting graph), some other will actually
become much more complex, as it is the case for the problem of our interest in
this paper, namely the single-source shortest-path tree (SPT) problem.

Related Work. Several classic tree/path-based problems have already been inves-
tigated in the framework of CTDPs. For instance, we refer the reader: (i) to [1,4]
for studies that have focused on the clustered traveling salesperson problem;
(ii) to [2,6] for works that have dealt with the clustered version of the minimum
Steiner tree problem. Moreover, we mention a study that has tackled the clustered
variant of the minimum routing-cost spanning tree problem [5], where the authors
also present an inapproximability result for the clustered shortest path problem,
which was in fact inspiring our present study. Finally, we refer the reader to the
paper by Feremans et al. [3], where the authors review several classic network
design problems in a clustered perspective, but with different side constraints on
the clusters.

Our Contribution. In this paper, we focus on the clustered version of the SPT
(say CluSPT in the following), and on its unweighted variant (say CluBFS
in the following, where BFS refers to the breadth-first search tree). It is worth
noticing that an SPT supports a set of communication primitives of primary
importance, as for instance the broadcasting and the spanning tree protocol,
and that in a non-clustered setting it can be computed in almost linear time
by means of the classic Dijkstra’s algorithm. Nevertheless, to the best of our
knowledge nothing is known about its clustered variant, despite the fact that
it is very reasonable to imagine a scenario where the aforementioned primitives
are required to be applied locally and hierarchically within each cluster. In this
work, we then try to fill this gap, by providing a set of results which allow to
shed light on its computational complexity.

Graph Notation. Throughout the paper, we use the following graph notation. Let
G = (V,E,w) denote a generic weighted undirected graph with |V | = n vertices
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and |E| = m edges, where w : E → R≥0 is a weight function, associated with the
graph, such that each edge e = (u, v) ∈ E has a non-negative weight w(e). We
denote by N(u) the set of neighbors of u in G, i.e., N(u) = {v ∈ V | (u, v) ∈ E}.
Let dG(u, v) denote the distance between vertices u and v in G, that is the length
of a shortest path PG(u, v) between u and v in G, which is given by the sum
of the weights of the edges in PG(u, v). For a given spanning tree T of G, dT ()
will denote the corresponding distance function on T . Given a subset of vertices
S ⊆ V of G, we denote by G[S] the subgraph of G induced by S. Finally, we
denote by V (G) and E(G) the set of vertices and edges of G when we need to
emphasize the dependence on the graph.

2 CluBFS

In this section, we formally introduce the CluBFS problem and then give our
main results about it. The problem is defined as follows.

CluBFS

Input: An unweighted undirected graph G = (V,E), whose set of ver-
tices is partitioned into a set of k (pairwise disjoint) clusters
V = {V1, V2, . . . , Vk}, a distinguished source vertex s ∈ V .

Solution: A clustered BFS tree of G rooted at s, i.e., a spanning subgraph T
of G such that: (i) T is a spanning tree of G rooted at s; (ii) for each
Vi ∈ V, T [Vi] is connected.

Measure: The cost of T , i.e., cost(T ) =
∑
v∈V dT (s, v).

In other words, a clustered BFS tree is a spanning tree T of G such that each
subgraph Ti = T [Vi] is connected and the sum of the hop distances in T from
the source s towards all the other vertices is minimized. By a reduction from the
NP-complete 3–CNF–SAT problem, we are able to prove the following result:

Theorem 1. CluBFS is NP-hard.

2.1 An approximation algorithm for CluBFS

In this subsection, we provide an approximation algorithm for the CluBFS
problem. The main idea of the algorithm is that of minimizing the number of
distinct clusters that must be traversed by any path from s to a vertex v ∈ V .
If all the clusters are of low diameter then this leads to a good approximation
for CluBFS. If at least one cluster has large diameter then it is possible to
show that the optimal solution must be expensive and hence any solution for
CluBFS will provide the sought approximation.

W.l.o.g., let V1 be the cluster containing vertex s. The algorithm first considers
each cluster Vi ∈ V and identifies all the vertices belonging to Vi into a single
vertex νi, so as to obtain a graph G′ in which (i) each vertex corresponds to a
cluster and (ii) there is an edge (νi, νj) between two vertices in G′ iff the set
Ei,j = {(vi, vj) ∈ E(G) : vi ∈ Vi ∧ vj ∈ Vj} is not empty. It then computes a
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BFS tree T ′ of G′ rooted at ν1 and constructs the sought approximate solution
T̃ as follows: initially T̃ contains all the vertices of G and the edges of a BFS
tree of G[V1] rooted at s; then, for each edge (νi, νj) of T ′ where νi is the parent
of νj in T ′, it adds to T̃ a single edge (vi, vj) ∈ Ei,j along with all the edges of a
BFS tree of G[Vj ] rooted at vj .

The analysis of the above algorithm allows us to prove the following result:

Theorem 2. There exists a polynomial-time O(n 2
3 )-approximation algorithm

for CluBFS.

While CluBFS thus admits an o(n)-approximation algorithm, interestingly
we proved (by a reduction from the NP-complete Exact–Cover–by–3-Sets problem)
that the clustered single-source to single-destination shortest-path problem (on
unweighted graphs) cannot be approximated in polynomial time within a factor of
n1−ε, for any constant ε > 0, unless P = NP. This extends the inapproximability
result (within any polynomial factor) that was given in [5] for the corresponding
weighted version. Thus, establishing an o(n2/3)-inapproximability of CluBFS
is a problem that we leave open.

2.2 Fixed-Parameter Tractability Results for CluBFS

In this subsection, we prove that CluBFS is fixed-parameter tractable w.r.t.
two natural parameters by providing two different FPT algorithms. The notion
of fixed-parameter tractability relaxes the classical notion of polynomial-time
tractability, by admitting algorithms whose running time is exponential, but only
in terms of some parameter of the problem instance that can be expected to be
small in typical applications.

In the first algorithm, we choose as our first “natural” parameter the number
of clusters of V. Notice that every solution T for CluBFS induces a cluster-tree
T̃ obtained from T by identifying the vertices belonging to the same cluster. The
algorithm first guesses the cluster-tree T̃ ∗ of an optimal solution T ∗, and then
it reconstructs T ∗ by using a dynamic programming approach. Notice that our
first FPT algorithm is efficient when the number of clusters of the CluBFS
instance is small. On the other hand, the classical BFS tree problem can be
seen as a special instance of CluBFS where V = {{v} : v ∈ V }, i.e., each
cluster contains only one vertex. This problem can clearly be solved in polynomial
time, but the complexity of the above algorithm becomes super-exponential! This
suggests that, for the case in which V consists of many singleton clusters, there
must be another parametrization yielding a better complexity. Following this
observation, we are able to develop another FPT algorithm parameterized in
the total number of vertices, say h, that belong to clusters of size at least two.
The idea of the algorithm is that of guessing the cluster-root ri of each cluster
Vi ∈ V, i.e., a vertex of Vi closer to the source s in an optimal solution T ∗ to
the CluBFS instance. It can be shown that T ∗[Vi] must be a BFS tree of
G[Vi] rooted at ri, and this, along with the knowledge of the cluster-roots, allows
us to efficiently reconstruct the optimal tree T ∗. Thus, overall, we can give the
following result:
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Theorem 3. CluBFS can be solved in O(min{nkk−2, hh} · (m+n)) time and
O(m) space.

3 CluSPT

In this section, we give our results on the CluSPT problem. Regarding the
formal definition of CluSPT, it can be simply derived as the weighted version of
CluBFS. In more details, the main differences w.r.t. CluBFS are then two:
(i) the given graph G = (V,E,w) is weighted by a weight function w : E → R≥0;
(ii) the measure that we are willing to minimize (i.e. the cost of T ) is expressed
in terms of distances (instead of hop distances, as in the unweighted case). In
other words, in this case, a clustered SPT is a spanning tree T of G such that
each subgraph Ti = T [Vi] is connected, and the total length of all paths in T
emanating from the source s is minimized. By elaborating on the reduction we
used to prove the NP-hardness of CluBFS, we are able to prove the following:

Theorem 4. CluSPT cannot be approximated, in polynomial time, within a
factor of n1−ε for any constant ε ∈ (0, 1], unless P = NP.

The above result is easily seen to be (essentially) tight, since we can provide a
simple O(n)-approximation algorithm, as follows. First it computes a multigraph
G′ from G by identifying each cluster Vi ∈ V into a single vertex νi. When doing
this, it associates each edge of G′ with the corresponding edge of G. Then it
computes a minimum spanning tree (MST from now on) T ′ of G′, and k MSTs
T1, . . . , Tk of G[V1], . . . , G[Vk], respectively. Finally, the algorithm returns the
spanning tree T̃ of G which contains all the edges in E′ ∪

⋃k
i=1 E(Ti), where E′

denotes the set of edges of G associated with an edge in E(T ′).

3.1 Fixed-Parameter Tractability Results for CluSPT

The two fixed-parameter algorithms for CluBFS, presented in Section 2.2,
can be easily extended to CluSPT. In particular, the theorem below can be
easily derived by Theorem 3 basically by replacing, in both the algorithms for
CluBFS, the BFS algorithm with the Dijkstra’s algorithm, when the part of
the solution to the problem inside each cluster has to be computed.

Theorem 5. CluSPT can be solved in O(min{nkk−2, hh} (m+n logn)) time
and O(m) space.
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Abstract. We present our ongoing work on the problem of increasing
the information spread in a network by creating a limited amount of new
edges incident to a given initial set of active nodes. As a preliminary
result, we give a constant approximation algorithm for the case in which
the set of initial active nodes is a singleton. Our aim is to extend this
result to the general case. We outline some further research directions
which we are investigating.

1 Introduction

Studying the processes by which ideas and influence propagate through a network
has been one of the main goals in the field of social network analysis. The influence
problem is motivated by many applications in different fields: from marketing,
with the aim of maximizing the adoption of a new product [3], to epidemiology,
in order to limit the diffusion of a virus or disease [11], going through the analysis
of social networks to find influential users and to study how information flows
through the network [1].

Different models of information diffusion have been introduced in the liter-
ature [5], two widely studied models are: the Linear Threshold Model (LTM)
and the Independent Cascade Model (ICM). In both models, we can distinguish
between active, or infected, nodes, called seeds, which spread the information, and
inactive ones. Recursively, currently infected nodes can infect their neighbours
with some probability. After a certain number of such cascading cycles, a large
number of nodes becomes infected in the network. In LTM the idea is that a node
becomes active if a large part of its neighbours is active. More formally, each
node u has a threshold t chosen uniformly at random in the interval [0, 1]. The
threshold represents the fraction of neighbours of u that must become active in
order for u to become active. At the beginning of the process a small percentage
of nodes of the graph is set to active in order to let the information diffusion
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process start. In subsequent steps of the process a node becomes active if the
fraction of its active neighbours is greater than its threshold. In ICM, instead, a
seed u tries to influence one of its inactive neighbours but the success of node u
in activating the node v only depends on the propagation probability of the edge
from u to v (each edge has its own value). Regardless of its success, the same
node will never get another chance to activate the same inactive neighbour. The
process terminates when no further node gets activated.

An interesting question, in the analysis of the information spread through a
network, is how to shape a given diffusion process so as to maximize or minimize
the number of activated nodes at the end of the process by taking intervention
actions. Many intervention actions have been studied in the literature, the most
important one is: if we are allowed to add at most k seeds, which ones should
be selected so as to maximize the number of active nodes resulting from the
diffusion process [5]. Besides source selection, other intervention actions may be
used to facilitate or limit the diffusion processes, such as inserting or deleting
edges and adding or deleting nodes in the network.

To the best of our knowledge, under LTM, the problems that have been stud-
ied are the following: Khalil et al. [6] consider two types of actions, adding edges
to or deleting edges from the existing network and they show that this network
structure modification problem has a supermodular objective and therefore can
be solved by algorithms with provable approximation guarantees. Zhang et al. [15]
consider arbitrarily specified groups of nodes, and interventions that involve both
edge and node removal from the groups. They develop algorithms with rigorous
performance guarantees and good empirical performance. Kimura et al. [7] use a
greedy approach to delete edges under the LTM without any analysis of the super-
modularity of the objective, nor rigorous approximation guarantees. Kuhlman et
al. [9] propose heuristic algorithms for edge removal under a simpler deterministic
variant of LTM which is not only hard, but also has no approximation guarantee.
Papagelis [12] and Crescenzi et al. [4] study the problem of augmenting the graph
in order to increase the connectivity or the centrality of a node, respectively and
experimentally show that this increases the expected number of eventual active
nodes. Under ICM, the main results are the following: Wu et al. [14] consider
intervention actions other then edge addition, edge deletion and source selection,
such as increasing the probability that a node infects its neighbours. It can be
shown that optimizing the selection of such actions with a limited budget tends
to be NP-hard and is neither submodular nor supermodular. Sheldon et al. [13]
study the problem of node addition to maximize the spread of information, and
provide a counterexample showing that the objective function is not submodular.
Bogunovic [2] addresses the node deletion problem providing a greedy algorithm.
Kimura et al. [8] propose methods for efficiently finding good approximate solu-
tions on the basis of a greedy strategy for the edge deletion problem under the
ICM, but do not provide any approximation guarantees.

In this paper, we focus on the Independent Cascade Model and investigate
the problem of adding a small number of edges incident to an arbitrary seed
in order to increase the spreading of information in terms of number of nodes
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that become active. Thus, the problem we analyse differs from above mentioned
ones and, as far as we know, similar problems have never been studied for the
Independent Cascade Model.

The aim of this paper is reporting our ongoing research on which we wish to
get feedback so as to possibly include these results in future publications.

2 Preliminary results

In this section we will give all the necessary definitions, introduce the problem
that will be considered and show our preliminary results.

A social network is represented by a weighted directed graph G(V, âĂĚE, p)
where V represents the set of nodes, E represents set of relationships and p :
V × V → [0, 1] is the probability of an edge to propagate information. For each
node u, Nu denotes the set of neighbours of u, i.e. Nu = {v|(u, v) ∈ E}.

The Independent Cascade Model [5] is an information diffusion model where
the information flows over the network through cascade. Nodes can have two
states, active: it means the node is already influenced by the information in
diffusion, inactive: node is unaware of the information or not influenced. The
process runs in discrete steps. At the beginning of ICM process, few nodes
are given the information, they are known as seed nodes. Upon receiving the
information these nodes become active. In each discrete step, an active node
tries to influence one of its inactive neighbours. Regardless of its success, the
same node will never get another chance to activate the same inactive neighbour.
The success of node u in activating the node v depends on the propagation
probability of the edge (u, v) defined as puv, each edge has its own value. The
process terminates when no further node gets activated.

We define the influence of a set A ⊆ V in the graph G, denoted by σ(A,G),
to be the expected number of active nodes at the end of the process, given that
A is the initial set of seeds. Given a set S of edges not in E, we denote by G(S)
the graph augmented by adding the edges in S to G, i.e. G(S) = (V,E ∪ S).

Given a graph G = (V,E), a vertex set A ⊆ V and an integer k, the problem
we are studying consists in finding a set S of edges incident to the nodes in A not
in E (that is, S ⊆ {(a, v) : v ∈ V \Na, a ∈ A}) such that |S| ≤ k and σ(A,G(S))
is maximum.

In the paper we focus on the case A = {a}. We leave the case |A| > 1 as a
future work. It has been shown [10] that for a monotone submodular function
the following greedy algorithm provides a

(
1− 1

e

)
-approximation: start with the

empty set and repeatedly add an element that gives the maximal marginal gain.
The greedy algorithm can be extended to any monotone submodular objective
function thanks to the following result.

Theorem 1 ([10]). For a non-negative, monotone submodular function f , let S
be a set of size k obtained by selecting elements one at a time, each time choosing
an element that provides the largest marginal increase in the value of f . Then S
provides a

(
1− 1

e

)
-approximation.
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In this paper, we exploit this result by showing that σ(A,G(S)) is monotone
and submodular w.r.t. the possible set of edges incident to a.

Theorem 2. σ(A,G(S)) is a monotonically increasing submodular function of
the set S of edges to be added.

Proof (sketch). We will use the definition of live-edge graph X = (V,EX) which
is a directed graph where the set of nodes is equal to V and the set of edges is
a subset of E. EX is given by a edge selection process such that each edge is
either live or blocked according to its propagation probability. We can assume
that for each pair of neighbours in the graph, a coin of bias puv is flipped and
the edges for which the coin indicated an activation are live, the remaining are
blocked. It is easy to show that a diffusion model is equivalent to the reachability
problem in live-edge graphs: given any seed set A, the distribution of active node
sets after the diffusion process ends is the same as the distribution of node sets
reachable from A in a live-edge graph.

We denote with χ(G) the probability space in which each sample point spec-
ifies one possible set of outcomes for all the coin flips on the edges, it is the set
of all possible live-edge graphs. Let R(A,X) denote the set of all nodes that
can be reached from the nodes in A on a path consisting entirely on live edges:
R(A,X) =

⋃
a∈A R(a,X).

The main idea to prove that the function in monotonically increasing is that,
after an edge addition in G, the live-graph X has at least one more edge than the
original live-edge graph, hence, the number of reachable nodes can not decrease.
To prove submodularity, we note that the number of new reachable nodes from
the seed after the edge addition in G(T ) is smaller or equal than the number of
new reachable nodes in G(S) since most of the nodes are already reachable by
the edges in T \ S. We prove these conditions for all X ∈ χ(G). ut

Note that, in the problem we are studying, the greedy algorithm can not eval-
uate the influence function exactly since σ(A,G(S)) is the expected number of
activated nodes and it has been proven that evaluating this function is generally
#P -complete for ICM [3]. However, by simulating the diffusion process suffi-
ciently many times and sampling the resulting active sets, it is possible to obtain
arbitrarily good approximations to σ(A,G(S)) (see Prop 4.1 in [5] to bound the
number of samples needed to obtain a (1 + δ)-approximation). It is an extension
of the result of Nemhauser et al. [10] that by using (1±δ)-approximate values for
the function to be optimized where δ ≥ 0, we obtain

(
1− 1

e − ε
)
-approximation,

where ε depends on δ and goes to 0 as δ → 0.

Theorem 3. For the problem of adding a set S of edges, not in E, incident to
the node in A = {a} such that |S| ≤ k and σ(A,G(S)) is maximum, there is
a polynomial-time algorithm approximating the maximum influence to within a
factor of

(
1− 1

e − ε
)
where ε is any positive real number.



Influence Maximization in the Independent Cascade Model 273

3 Future research

In this paper, we presented our ongoing work on the problem of increasing the
information spread in a network considering the case in which the set of active
nodes A is a singleton. We have analysed the properties of the influence function
which is monotonically increasing and submodular and we propose a greedy
approximation algorithm for efficiently computing a set of edges that a seed can
decide to add to the graph in order to increase the expected number of influenced
nodes. As future works, we plan to extend our approach to |A| > 1 and consider
the insertion of edges incident to all the seeds in A. Moreover, we plan to analyse
a generalization of the problem considered in this paper by allowing the deletion
of edges incident to seeds. Finally, our intent is to study the same problem in a
generalization of ICM, which is the Decreasing Cascade Model. In this model the
probability of a node u to influence v is non-increasing as a function of the set
of nodes that have previously tried to influence v. From the experimental point
of view, our aim is to measure the efficiency of the greedy algorithm in term of
expected number of influenced nodes.
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Abstract. We deploy a mechanism design approach for allocating a
divisible commodity (electricity in our example) among consumers. We
consider each consumer with an associated personal valuation function of
the energy resource during a certain time interval. We aim to select the
optimal consumption profile for every user avoiding consumption peaks
when the total required energy could exceed the energy production. The
mechanism will be able to drive users in shifting energy consumptions in
different hours of the day. We start by presenting a very basic Vickrey-
Clarke-Groves mechanism, we discuss its weakness and propose several
more complex variants. This is an extended abstract, for additional details
we provide a technical report [1].

1 VCG Mechanisms

Mechanism Design [3–6] is based on the concept of social choice that is simply
an aggregation of the preferences of the different participants toward a single col-
lective decision. Mechanism Design attempts to implement desired social choices
in a strategic setting, assuming that players act rationally in a game theoretic
sense.

Definition 1 (Player’s Valuation Function) Let us consider a set of players
N = {1, . . . , n} and a set of alternatives or outcomes A. Every player i has a
preference over alternatives that is described by a valuation function:

vi : A→ R

where vi(a) denotes the valuation that player i assigns to outcome a. Furthermore,
vi ∈ Vi where Vi ⊆ R|A| is a set of possible valuation functions for player i.
? Research partially supported by: project "Viscolla" co-funded by Fondazione Cassa
di Risparmio di Perugia, project "BitCoins" co-funded by Banca d’Italia and Cassa
di Risparmio di Perugia
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Definition 2 (Social Choice Function) The social choice function selects an
alternative (or outcome) from the set of alternatives A according to the vector of
users’ valuation functions:

f : V1 × · · · × Vn → A

So, an outcome a, from the set A of alternatives, depends on each possible profile
v = (v1, v2, . . . , vn) :

a = f(v)

This outcome is called social choice for that profile.

When considering a mechanism with money, that is a mechanism where there
are money transfers between the mechanism and players, a payment function
computes money transfers for every players.

Definition 3 (Direct Revelation Mechanism) A direct4 revelation mecha-
nismM is composed of:

M = 〈f, p1, . . . , pn〉

where f is the social choice function with A as the possible outcomes and p1, . . . , pn

are the payment vectors where pi : V1 × · · · × . . . Vn → R is the amount that user
i pays to the mechanism.

Definition 4 (Utility Function) Considering a mechanismM = 〈f, p1, . . . , pn〉,
the valuation set v = (v1, . . . , vn) and the alternative chosen a = f(v1, . . . , vn),
the utility for every user i is:

ui(a) = vi(a)− pi(vi(a), v−i(a)) (1)

where v−i is the (n-1)-dimensional vector in which the i’th coordinate is removed.

The most famous direct revelation mechanism is the Vickrey-Clarke-Groves
(VCG) Mechanism [5].

Definition 5 (VCG Mechanism) A VCG mechanism determines f(v):

f(v) ∈ argmaxb∈A

n∑
j=1

vj(b) (2)

and pi(v) such that:

pi(v) = hi(v−i)−
n∑

j 6=i

vj(f(v)) (3)

for some function h1, . . . , hn where hi : V−i → R.
4 There exists also the indirect revelation mechanism with money, that differs for the
fact that players have private information (player’s preferences) and select strategies
according to this information set. In this work, we do not consider indirect revelation
mechanism because we assume that the users’ valuations functions are known.
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Now, there are several versions of the model according to the choice of hi(v−i).
Important to note that the function hi can be any arbitrary function but it must
not depend on the vi. One of the most important versions is the VCG mechanism
with the Clarke pivot rule, introduced by Clarke [2].

Definition 6 (VCG Mechanism with Clarke Pivot Rule) A VCG mech-
anism with Clarke pivot payments determines hi(vi):

hi(v−i) = maxa

n∑
j 6=i

vj(a) (4)

so pi(v) becomes:

pi(v) = maxb

n∑
j 6=i

vj(b)−
n∑

j 6=i

vj(f(v)) (5)

where b is the selected alternative if the i-th player is not present in the system5.

By choosing this kind of hi(v−i) Clarke wants to let the buyer paying only the
influence that he has in the system. In fact, an user influences the system when
the outcome changes depending on the absence or presence of player i. If the
outcome changes significantly when player i is removed, it means that player i
strongly affects the system, so he has to pay for his influence (from this concept
derives the name “Clarke pivot rule").

2 Problem Formulation and System Model

2.1 Problem Description

In our work, we model an energy allocation problem through a VCG mechanism
approach. The main aim is to avoid blackouts when the users’ requested energy
exceeds the available energy and the energy network must be switched off due
to overload. Fig. 1 describes a possible case for one-day time period with trends
for the energy functions. The dashed lightblue line represents the distributor’s
available energy, the continuous darkblue line the energy requested from all con-
sumers. The lines on the bottom represent the single consumption of every user
(five users in this case). So in Fig. 1b, we can consider only the consumers "play-
ers" and the energy available function as a parameter for the mechanism. The
produced energy is a constraint to take into account while maximizing the social
welfare. Fig. 1a describes an example of a situation in which energy availability
function (dashed lightblue line) and aggregate users’ consumption (continuous
darkblue line) are compared. Where the set of players contains the distributor
5 Here, “a" is the optimal assignment including player “i", while “b" is the optimal
assignment when we exclude player “i"
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(a) Trend of energy availability considering
the energy distributor a player.

(b) Trend of energy availability considering
only consumers as players

Fig. 1: Comparison between energy functions: users’ desired trends, the aggre-
gated desired trend of all of agent and the produced energy function.

and the difference between this two functions (production - consumption, the
dotted red line in the graph) must be greater or equal than zero. In fact, another
way to tackle this problem is that we can consider that the difference between
the production and the aggregate consumption, must be greater or equal than
zero for this purpose we can consider the distributor as a player. The main idea
is to deploy a mechanism in order to drive users in shifting energy consumptions,
according to the produced energy and the consumption preference of the com-
munity.

2.2 Model Description

Our objective is to determine a mechanism that will select the optimal energy ac-
cording to the desired consumption of every player. We were initially inspired by
the "Public Project" example provided in [5]. To better understand the idea, we
could sum up our problem by drawing connections with the classical knapsack op-
timization problem. As first solution, we decide to put all into the knapsack only
if the volume of the knapsack is sufficient, otherwise we do not put in anything.
In the energy case, the distributor will provide energy only if the consumption is
not greater than the available energy. For this reason, we consider a scenario with
an energy distributor and n energy users (n + 1 players). The distributor has an
amount of available energy and each consumer has a desired consumption, that
is represented by a negative value due to the design of the social choice function
of the VCG mechanism showed in Eq. 2. This mechanism has the positive aspect
that it avoids blackout situations.
As a further solution, we assume that we have a set of object to put into the
knapsack minimizing the empty space. We model the scenario removing the
distributor from the set of players and considering the available energy a thresh-
old resulting that the energy is provided only to a subset of users with aim to
avoiding the waste of produced energy. Moreover, each consumer has a positive
desired consumption avoiding a negative net utility introduced in Eq. 1. This
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second model with respect to the first one allows to provide energy even if the
the aggregated consumption is greater than the production by selecting a subset
of users. Regarding the next solution, we assume that we have a liquid instead
of a set of objects, so we are able to fill the entire knapsack. So, we introduce a
third solution that assigns to users all the available energy till reaching the total
amount of produced energy. It means that for each user the mechanism calculates
a portion of available energy not greater than his desired consumption. Here as
well, the mechanism selects the consumption for a subset of users, however, un-
like the second case, there is no wasted energy. The next improved mechanism is
similar to the third solution and in addition we introduce the time variable. So,
every energy function become a power function over time and the mechanism
chooses the energy to be provided according to every user’s preferences, allowing
the shifting of the consumption in the time interval considering that each user
must receive at least his aggregated requested energy.
Our final approach is based on the previous one in which we assign a part of
available power thanks to a proportional allocation scheme that provides a posi-
tive amount of power to every user.
A final remark is that this model is essentially a game so players must be moti-
vated to play by getting a positive utility. But, in our case study, energy allocation,
a user usually has to consume and, consequently, play the game for this reason
he can accept also an utility equal to zero.
In this work, we propose several configurations of the mechanism, starting from
the simplest to a more complicated configuration which has the property of as-
signing the available energy to users according to their desired energy minimizing
the energy wasting while maximizing the aggregate utility of all users.
A development is to find a different payment scheme that takes into account the
actual consumption and energy consumption peaks. The final aim is to stimulate
users to behave in a good energy way offering a discount on the electricity bill
that will lead to get a positive net utility.
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Abstract. Recently, an algorithm for merging counter-based data sum-
maries which are the output of the Frequent algorithm (Frequent sum-
maries) has been proposed by Agarwal et al. In this paper, we present
a new algorithm for merging Frequent summaries. Our algorithm is fast
and simple to implement, and retains the same computational complex-
ity of the algorithm presented by Agarwal et al. while providing better
frequency estimation.

1 Introduction

In 2011, we presented an algorithm [1] for merging in parallel counter-based data
summaries which are the output of the Frequent [2] algorithm. Recently, we also
designed a parallel algorithm for merging Space Saving summaries [3] and an
algorithm for mining frequent items in the time fading model [4]. In 2012, a new
algorithm for merging counter-based data summaries which are the output of
the Frequent algorithm has been proposed by Agarwal et al. [5].

Given a data set A of n items t1, t2, . . . , tn, the frequency of an item i is
fi = |{j |tj = i} |. Let f̃i be the frequency reported by the algorithm for item i.
The absolute error of item i is defined as the difference |fi − f̃i|. The (absolute)
total error is then the sum of the absolute errors related to the items reported
by an algorithm.

In this paper, we present a new algorithm for merging Frequent summaries
(based on our previous algorithm) which is fast and simple to implement, and
retains the same computational complexity of the algorithm presented in [5] while
providing better frequency estimation. We briefly recall notations and definitions
used in the sequel.

Definition 1. Given a multiset N , with |N | = n, and 2 ≤ k ≤ n, a frequent
item (or k–majority element) is an element x ∈ N whose frequency fN (x) is
such that fN (x) ≥

⌊
n
k

⌋
+ 1. The frequent items (or k–majority) problem takes

as input an array N of n numbers (a multiset), and requires as output the set
S =

{
x ∈ N : fN (x) ≥

⌊
n
k

⌋
+ 1
}
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Definition 2. Merged summary.
Given k, the k-majority parameter, let A1 and A2 be respectively the data sets
from which the data summaries S1 and S2 are derived by an application of the
Frequent algorithm, and let n = |A1| + |A2|. The merged summary M is the
multiset which contains all of the k-majority elements, i.e., all of the elements
whose frequency in A1

⊎
A2 is greater than or equal to

⌊
n
k

⌋
+ 1. Moreover, all of

the guarantees assured by Frequent on its output continue to hold for the summary
M with reference to the input A1

⊎
A2.

Definition 3. 2-way merging problem.
Input: k, the k-majority parameter; two summaries S1 and S2 derived by an
application of the Frequent algorithm.
Output: The merged summaryM.

The paper is organized as follows. We present in Section 3 our algorithm. In
Section 4, the proposed algorithm is analyzed in terms of correctness, computa-
tional complexity and total error committed. Full details and proofs will appear
in a forthcoming extended version. We draw our conclusions in Section 5.

2 Related Work

In [5], Agarwal et al. introduced an algorithm for merging two data summaries
S1 and S2 outputted by the Frequent algorithm. In the following, given a counter
Ci, the notation Ce

i refers to the item monitored by the i–th counter, whilst Cf
i

refers to its estimated frequency.

Algorithm 1 Merging Algorithm by Agarwal et al.
Require: S1; an array of counters; S2; an array of counters; k, k-majority parameter

(the number of counters is k − 1);
Ensure: an array containing k–majority candidate elements
1: procedure merge(S1,S2, k) . a merged summary of S1 and S2
2: S ← combine(S1,S2);
3: if S.nz > k − 1 then . prune counters in S
4: for i = k to 2k − 2 do
5: Cf

i ← Cf
i − Cf

k−1;
6: end for
7: end if
8: return S[k . . . (2k − 2)]; . return the last k − 1 counters
9: end procedure

The algorithm works as follows. It starts combining as usual the two data
summaries, by adding the frequencies of counters monitoring the same item. This
could entail, for Frequent summaries, the use of up to 2k−2 counters in the worst
case, when S1 and S2 share no item. Let S be the combined summary, and S.nz
the number of nonzero counters. Moreover, assume, without loss of generality,
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that the total number of counters in S, denoted by S.length, is exactly 2k − 2
and they are stored in sorted ascending order. Indeed, it is always possible to pad
the first S.length− S.nz positions in S with dummy counters whose frequency
is zero.

If S.nz ≤ k− 1 the algorithm returns the last k− 1 counters of S. Otherwise,
a pruning operation is required. Then, the algorithm subtracts from the last k−1
counters the frequency of the Ck−1-th counter and returns the pruned counters.
The algorithm requires in the worst case time linear in the total number of
counters, i.e., O(k) if implemented as described in [5] using an hash table.

We now analyze the total error committed by this algorithm. Clearly, combin-
ing the two data summaries can be done without any additional error. However,
the pruning operation occurring when the size of S is greater than k− 1 induces
a total error ET = (k − 1)Cf

k−1, i.e., k − 1 times the frequency of the Ck−1-th
counter in S. The authors proved that the additional error introduced by the
merge is within the error bound guaranteed by Frequent.

3 New Merging Algorithm

In this Section we present our algorithm, shown in pseudo-code as Algorithm 2
for merging two Frequent summaries.

Algorithm 2 Merging Algorithm for Frequent summaries.
Require: S1; an array of counters; S2; an array of counters; k, k-majority parameter

(the number of counters is k − 1);
Ensure: an array containing k–majority candidate elements
1: procedure merge(S1,S2, k) . a merged summary of S1 and S2
2: S ← combine(S1,S2);
3: if S.nz ≤ k − 1 then
4: return S[k . . . (2k − 2)]; . return the last k − 1 counters
5: else. build the merged summaryM, consisting of counters monitoring item ei

with frequency fi, i = 1, . . . , k − 1, as follows:
6: e1 ← Ce

k

7: f1 ← Cf
k − Cf

k−1;
8: M[1]← (e1, f1);
9: for i = 2 to k − 1 do
10: ei ← Ce

k−1+i

11: fi ← Cf
k−1+i − Cf

k−1 + Cf
i−1;

12: M[i]← (ei, fi);
13: end for
14: return M;
15: end if
16: end procedure

Algorithm 2 starts by combining the two input summaries into a combined
summary S. Then, if the number of nonzero counters in S is less than or equal
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to k − 1, the algorithm returns as merged summary the last k − 1 counters of
S. Otherwise, the last k − 1 counters are first updated using exact closed-form
equations and then reported as output. Actually, these determining equations
produce the same merged summary that we would obtain applying the Frequent
algorithm to the combined summary S, a procedure we described and proved to
be correct in [1]. Indeed, in [1] a slightly modified version of Frequent is used
on S, in which the update step is carefully modified so that each update still
requires O(1) time in the worst case. These modifications simply consist in one-
shot updates: for each item in S to be processed, we increment one-shot the
counter in charge of monitoring it by a number of occurrences equal to the item’s
counter in S. In the next Section, we shall show the determining equations, state
the correctness of the algorithm and analyze its complexity in the worst case and
the total error committed. The main result of the paper is the proof that the
following properties hold for our algorithm: (i) it retains the same complexity of
the Algorithm proposed by Agarwal et al [5], and (ii) its total error committed
is smaller or equal.

4 Analysis

4.1 Complexity Analysis
Lemma 1. The computational complexity of our Algorithm 2 is O(k) in the
worst case.

4.2 Correctness of Algorithm 2
By construction, the combine step producing S preserves the frequent items
in S1

⊎
S2 since no item is discarded and no occurrences are lost. Therefore,

it suffices to show that our closed-form equations produce the same merged
summary which would be outputted by an application of Frequent (the one-shot
update version) to the combined summary. Let S.length = 2k − 2 and assume
k ≤ S.nz ≤ 2k−2. We denote by Cj the j–th counter in S, j = 1, . . . , 2k−2, and
by ei

j and mi
j , respectively, the item monitored by the j–th counter of Frequent

(denoted as Mj) and its value at the end of the i–th update step, i = 0, . . . , k− 1
and j = 1, . . . , k − 1. We define e0

j = Ce
j and m0

j = Cf
j , j = 1, . . . , k − 1. Indeed,

the step zero reflects the situation in which we have already filled the first k − 1
counters in the Frequent data structure with the corresponding initial k − 1
counters in S. This is correct owing to the following facts: (i) the counters in
S are stored in ascending sorted order with respect to the frequencies, (ii) the
items in S are distinct and (iii) Frequent works by assigning an item which is not
currently monitored to a new counter if available and maintaining the ascending
sorted order with respect to the frequencies.

Theorem 1. For each update step i = 1, . . . , k− 1 and position j = 1, . . . , k− 1,
the values ei

j and mi
j can be defined as follows:

ei
j = Ce

i+j j = 1, . . . , k − 1 (1)
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mi
j =

{
Cf

i+j − Cf
i j = 1, . . . , k − i

Cf
i+j − Cf

i + Cf
i+j−k j = k − i + 1, . . . , k − 1

(2)

4.3 Total Error Committed By Algorithm 2

In what follows, we assume that after the combine step we are left with a data
summary S consisting of more than k−1 nonzero counters. Otherwise, both algo-
rithms do not commit any additional error, owing to the fact that the combine step
obviously does not incur any error. Therefore, assuming that S consists of more
than k − 1 nonzero counters, the total error committed by our algorithm is the
total error committed by Frequent when applied to S. The counters’ frequencies
at the end of the (k−1)–th update step are mk−1

j , j = 1, . . . , k−1. Consequently,
since Frequent underestimates the frequencies, the total error committed is

ET =
k−1∑
j=1

Cf
k−1+j −mk−1

j (3)

We claim that the total error committed by Algorithm 2 is less than or equal
to the total error committed by algorithm [5].

Theorem 2. The following inequality holds

k−1∑
j=1

(Cf
k−1+j −mk−1

j ) ≤ (k − 1)Cf
k−1. (4)

5 Conclusions

In this paper we have introduced a new algorithm for merging Frequent summaries
and compared it to the algorithm proposed by Agarwal et al. from a theoretical
perspective. Our algorithm uses exact closed-form equations for determining
the outputs; we have shown that it retains the same computational complexity,
whilst providing better frequency estimation. Future work includes designing
and carrying out several numerical experiments in order to compare the two
algorithms we have discussed from a quantitative perspective.
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Abstract. In this paper, we address three related problems. One is
the enumeration of all the maximal edge-induced chain subgraphs of
a bipartite graph. We give bounds on their number and use them to
establish the input-sensitive complexity of the enumeration problem. The
second problem we treat is the minimum chain subgraph cover. Finally,
we approach the problem of enumerating all minimal chain subgraph
covers and show that it can be solved in quasi-polynomial time.
Keywords: Chain Subgraph Cover Problem, Enumeration Algorithms,
Exact exponential algorithms.

1 Introduction

Enumerating (listing) the subgraphs of a given graph plays an important role
in analysing its structural properties. Thus, it is a central issue in many areas,
notably in data mining and computational biology.

In this paper, we address the problem of enumerating without repetitions all
maximal edge-induced chain subgraphs of a bipartite graph. These are graphs
that do not contain a 2K2 as induced subgraph (i.e. there are no independent
edge sets of size 2). From now on, we will refer to them as chain subgraphs for
short when there is no ambiguity.

Bipartite graphs arise naturally in many applications, such as biology as will
be mentioned later in the introduction, since they enable to model the relations
between two different classes of objects. The problem of enumerating in bipartite
graphs all subgraphs with certain properties has thus already been considered in
the literature. These concern for instance maximal bicliques for which polynomial
delay enumeration algorithms in bipartite [6,11] as well as in general graphs [5,11]
were provided. In the case of maximal induced chain subgraphs, their enumeration
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can be done in output polynomial time as it can be reduced to the enumeration
of a particular case of the minimal hitting set problem [7] (where the sets in
the family have cardinality 4). However, the existence of a polynomial delay
algorithm for this problem remains open. To the best of our knowledge, nothing
is known so far about the problem of enumerating maximal edge-induced chain
subgraphs in bipartite graphs.

In this paper, we propose a polynomial delay algorithm to enumerate all
maximal chain subgraphs of a bipartite graph. We also provide an analysis of the
time complexity of this algorithm in terms of input size. In order to do this, we
prove some upper bounds on the maximum number of maximal chain subgraphs
of a bipartite graph G with n nodes and m edges. This is also of intrinsic interest
as combinatorial bounds on the maximum number of specific subgraphs in a
graph are difficult to obtain and have received a lot of attention (see for e.g.
[8,12]).

We then address a second related problem called the minimum chain sub-
graph cover problem. This asks to determine, for a given graph G, the minimum
number of chain subgraphs that cover all the edges of G. This has already been
investigated in the literature as it is related to other well-known problems such
as maximum induced matching (see e.g. [3,4]). For bipartite graphs, the problem
was shown to be NP-hard [14].

We provide an exact exponential algorithm which runs in time O∗((2 + ε)m),
for every ε > 0 (by O∗ we denote standard big O notation but omitting poly-
nomial factors). Notice that, since a chain subgraph cover is a family of subsets
of edges, the existence of an algorithm whose complexity is close to 2m is not
obvious. Indeed, the basic search space would have size 22m , which corresponds
to all families of subsets of edges of a graph on m edges.

Finally, we approach the problem of enumerating all minimal covers by chain
subgraphs. To this purpose, we provide a quasi-polynomial time algorithm to
enumerate all minimal covers by maximal chain subgraphs of a bipartite graph.
To do so, we prove that this can be polynomially reduced to the enumeration of
the minimal set covers of a hypergraph.

Besides their theoretical interest, the problems of finding one minimum chain
subgraph cover and of enumerating all such covers have also a direct application
in biology. Nor et al. [13] showed that a minimum chain subgraph cover of such
a bipartite graph provides a good model for identifying the minimum genetic
architecture enabling to explain one type of manipulation, called cytoplasmic
incompatibility, by bacteria of a genus called Wolbachia of their insect hosts.
Moreover, as different minimum covers may correspond to solutions that differ
in terms of their biological interpretation, the capacity to enumerate all such
minimum chain covers becomes crucial.
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2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the standard
graph terminology, as contained for instance in [2]. We consider finite undirected
graphs without loops or multiple edges.

Given a bipartite graph G = (U ∪W,E) and a node u ∈ U , we denote by
NG(u) the set of nodes adjacent to u in G and by EG(u) the set of edges incident
to u in G. Moreover, given U ′ ⊆ U and W ′ ⊆ W , we denote by G[U ′,W ′] the
subgraph of G induced by U ′∪W ′. A node u ∈ U such that NG(u) = W is called
a universal node.

For a chain graph, an equivalent condition of not containing a 2K2 as an
induced subgraph it is that for each two nodes v1 and v2 both in U (resp. in
W ), it holds that either NG(v1) ⊆ NG(v2) or NG(v2) ⊆ NG(v1). Given a chain
subgraph C = (X ∪ Y, F ) of G, with the largest neighbourhood of C, we mean
the neighbourhood of a node x in X for which the set NC(x) ⊆ Y has maximum
cardinality. A set Y ′ ⊆ Y is a maximal neighborhood of G, if there exists u ∈ U
such that NG(u) = V ′ and there does not exist a node u′ ∈ U such that NG(u) ⊂
NG(U ′).

In this paper, we always consider edge-induced chain subgraphs of a graph
G. Hence, we identify a chain subgraph C of G by its set of edges E(C) ⊆ E(G)
and in that case its set of nodes will be constituted by all the nodes of G incident
to at least one edge in C (sometimes abusing notation, we more simply write
C ⊆ G or e ∈ C). A maximal chain subgraph C of a given bipartite graph G is
a connected chain subgraph such that no superset of E(C) is a chain subgraph.
We denote by C(G) the set of all maximal chain subgraphs in G.

A set of chain subgraphs C1, . . . , Ck is a cover for G if ∪1≤i≤kE(Ci) = E(G).
Observe that, given any cover of G by chain subgraphs C = {C1, . . . Ck}, there
exists another cover of same size C ′ = {C ′1, . . . C ′k} whose chain subgraphs are all
maximal; more precisely, for each i = 1, . . . , k, C ′i is a maximal chain subgraph of
G and C ′i admits Ci as subgraph. In order to avoid redundancies, from now on,
although not explicitly highlighted, we will restrict our attention to the covers
by maximal chain subgraphs.

We denote by S(G) the set of all minimal chain covers of a bipartite graph
G.

An enumeration algorithm is said to be output polynomial or total polynomial
if the total running time is polynomial in the size of the input and the output. It
is said to be polynomial delay if the time between the output of any one solution
and the next one is bounded by a polynomial function of the input size [10].

3 Enumerating All Maximal Chain Subgraphs

The following theorem characterizes the structure of a maximal chain subgraph
and it is fundamental for all the other results of the paper.
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Theorem 1. Let C = (X ∪ Y, F ) be a chain subgraph of G = (U ∪W,E), with
X ⊆ U , Y ⊆W and F ⊆ E, and let x ∈ X be a node with largest neighbourhood
in C. Then C is a maximal chain subgraph of G if and only if:

(i) NC(x) = NG(x) is a maximal neighbourhood of G, i.e. there does not exist a
node u′ ∈ U such that NG(u) ⊂ NG(u′).

(ii) C \ EG(x) is a maximal chain subgraph of G
[
U \ {x}, NG(x)

]
.

Theorem 1 is the basis of a new recursive algorithm which enumerates all
maximal chain subgraphs of G with polynomial delay:

Proposition 1 (Time Complexity and Polynomial Delay). Let G = (U ∪
W,E) be a bipartite graph. It is possible to enumerate all maximal chain subgraphs
of G with a total running time of O(|C(G)|n2m). Moreover, the solutions are
enumerated in polynomial time delay O(n2m).

These two statements allow us to achieve some other results briefly described
in the following.

3.1 Bounds on the number of maximal chains

By Theorem 1(ii), a maximal chain subgraph can be found by recursively reducing
the graph to one whose partition has size |U |−1, so we obtain that the maximum
number of chain subgraphs is bounded by min(|U |, |W |)! and that this bound is
tight as e.g. the antimatching graph reach this bound.

We give also a bound on the number of maximal chain subgraphs for a
bipartite graph with m edges:

Theorem 2. Let G = (U ∪ W,E) be a bipartite graph with m edges; then
|C(G)| ≤ 2

√
m log m.

3.2 Minimum Chain Subgraph Cover

Exploiting Proposition 1, the bound obtained in Theorem 2 and the inclu-
sion/exclusion method [1,8] that has already been successfully applied to exact
exponential algorithms for many partitioning and covering problems, we are able
to provide an O∗((2 + ε)m) algorithm to decide if there exists a chian subgraph
cover of size k for a given bipartite observing that the basic search space has size
22m .

Theorem 3. Let ck(G) be the number of chain subgraph covers of size k of a
graph G. Given a bipartite graph G with m edges, for all k ∈ N∗ and for all ε > 0,
ck(G) can be computed in time O∗((2 + ε)m).
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3.3 Enumeration of Minimal Chain Subgraph Covers

The enumeration of all minimal chain subgraph covers can be polynomially
reduced to the enumeration of the minimal set covers of a hypergraph. This
reduction implies that there is a quasi-polynomial time algorithm to enumerate
all minimal chain subgraph covers. Indeed, the result in [9] implies that all the
minimal set covers of a hypergraph can be enumerated in time N log N where N
is the sum of the input size (i.e. n+m) and of the output size (i.e. the number
of minimal set covers).

Let S = S(G) the set of its minimal chain subgraph covers. Notice that the
minimal chain subgraph covers of G are the minimal set covers of the hypergraph
H := (V, E) where V = E and E = C. Unfortunately, the size of H might be
exponential in the size of G plus the size of S. Indeed not every maximal chain
subgraph in C will necessarily be part of some minimal chain subgraph cover. In
order to obtain a quasi-polynomial time algorithm to enumerate all minimal chain
subgraph covers, we need to enumerate only those maximal chain subgraphs that
belong to a minimal chain subgraph cover.

Given an edge e ∈ E, let Ce be the set of all maximal chain subgraphs of G
containing e andMe the set of all edges e′ ∈ E inducing a 2K2 in G together
with e.

We call an edge e ∈ E non-essential if there exists another edge e′ ∈ E such
that Ce′ ⊂ Ce. An edge which is not non-essential is said to be essential. Note
that for every non-essential edge e, there exists an essential edge e1 such that
Ce1 ⊂ Ce. Indeed, by applying iteratively the definition of a non-essential edge,
we obtain a list of inclusions Ce ⊃ Ce1 ⊃ Ce2 . . ., where no Cei

is repeated as the
inclusions are strict. The last element of the list will correspond to an essential
edge.

By the next Lemma we show that it is sufficient to consider the chain sub-
graphs which contain at least an essential edge.

Lemma 1. Let C be a maximal chain subgraph of a bipartite graph G = (U ∪
W,E). Then C belongs to a minimal chain subgraph cover of G if and only if C
contains an essential edge.

In the following, we show how to detect essential edges.

Theorem 4. Given a bipartite graph G = (U∪W,E), for any two edges e, e′ ∈ E,
Ce ⊆ Ce′ if and only if Me ⊇Me′ .

Notice that, given an edge e = (u,w) ∈ E, u ∈ U and w ∈ W , it is easy to
determine the setMe, and checking whetherMe ⊇Me′ is also easy.

These results allow us to achieve the following result:

Theorem 5. Given a bipartite graph G = (U ∪W,E), one can enumerate all its
minimal chain subgraph covers, i.e. all the elements in S, in time O(|S|log(|S|)+2).
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